非线性Schrdinger方程差分格式的计算稳定性
作者:
基金项目:

江苏省研究生创新工程项目(CX09B-224Z)


Computational stability of difference schemes of nonlinear Schrdinger equation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    运用判定非线性发展方程差分格式计算稳定性的Hirt启发性分析方法,对一类非线性Schrdinger方程差分格式的计算稳定性进行分析,得到了保证差分格式计算稳定的必要条件.数值试验结果进一步表明,得到的稳定性判据不仅是保证差分格式计算稳定的必要条件,而且在实际中也是非常有效的.

    Abstract:

    The computational stability of nonlinear Schrdinger equation is analyzed by the Hirt heuristic analysis in this study.Using the method,the necessary condition of computational stability of difference schemes about the nonlinear Schrdinger equation is given,which is proved to be practical and effective by four sets of numerical examples.

    参考文献
    [1] 高守亭,杨惠君.多维约化摄动和大气中的非线性波[J].大气科学,1986,10(1):35-45 GAO Shouting,YANG Huijun.Multi-dimensional reductive perturbation method and atmosphereic nonlinear waves[J].Scientia Atomspherica Sinica,1986,10(1):35-45
    [2] 罗德海.旋转正压大气中的非线性Schr(o)dinger方程和大气阻塞[J].气象学报,1990,48(3):265-274 LUO Dehai.Nonlinear schrodinger equation in the rotational atmosphere and atmospheric blocking[J].Acta Meterologica Sinica,1990,48(3):265-274
    [3] Hirt C W.Heuristic stability theory for finite difference equation[J].Journal of Computational Physics,1968,2(4):339-355
    [4] 林万涛,季仲贞,王斌,等.一种判定非线性发展方程差分格式计算稳定性的新方法[J].科学通报,2000,45(8):881-885 LIN Wantao,JI Zhongzhen,WANG Bin,et al.A new method for judging the computational stability of the difference schemes of nonlinear evolution equations[J].Chinese Science Bulletin,2000,45(8):881-885
    [5] Lin W T,Ji Z Z,Wang B.A comparative analysis of computational stability for linear and non-linear evolution equations[J].Advances in Atmospheric Sciences,2002,19(4):699-704
    [6] 杨晓忠,王光辉,季仲贞,等.判定Burgers方程差分格式计算稳定性的方法[J].华北电力大学学报,2002,29(1):91-96 YANG Xiaozhong,WANG Guanghui,JI Zhongzhen,et al.A new method for judging computational stability of difference schemes of Burgers equation[J].Journal of North China Electric Power University,2002,29(1):91-96
    [7] 杨晓忠,吴耀红,季仲贞,等.判定KDV方程普遍性差分格式计算稳定性的新方法[J].现代电力,2002,19(4):99-104 YANG Xiongzhong,WU Yaohong,JI Zhongzhen,et al.New method for judging the computational stability of general difference schemes of KDV equation[J].Modern Electric Power,2002,19(4):99-104
    [8] 林万涛,谢正辉.非线性发展方程的非守恒格式的计算稳定性问题[J].大气科学,2004,28(4):510-516 LIN Wantao,XIE Zhenghui.The computational stability of nonconservative schemes of nonlinear evolution equations[J].Chinese Journal of Atmospheric Sciences,2004,28(4):510-516
    [9] 朱杰顺,周伟灿.非线性平流方程计算稳定性对初值的依赖性研究[J].南京气象学院学报,2003,26(3):419-423 ZHU Jieshun,ZHOU Weican.Dependence of computational stability of nonlinear advection equation on the initial value[J].Journal of Nanjing Institude of Meteorology,2003,26(3):419-423
    [10] 朱利华,周伟灿,邹兰军.垂直切变流中非线性重力波及其相互作用[J].南京气象学院学报,2004,27(3):405-412 ZHU Lihua,ZHOU Weican,ZOU Lanjun.Nonlinear gravitational waves and their interactions in a vertical shearing flow[J].Jouranl of Nanjing Institude of Meteorology,2004,27(3):405-412
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵海坤,吴华,周伟灿.非线性Schrdinger方程差分格式的计算稳定性[J].南京信息工程大学学报(自然科学版),2010,(6):553-556
ZHAO Haikun, WU Hua, ZHOU Weican. Computational stability of difference schemes of nonlinear Schrdinger equation[J]. Journal of Nanjing University of Information Science & Technology, 2010,(6):553-556

复制
分享
文章指标
  • 点击次数:1033
  • 下载次数: 2371
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-08-14

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司