一种基于不平衡样本集的摩托车识别算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划)项目(2006AA11Z221);国家自然科学基金(60702076)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于HSV(HueSaturationValue)空间的Haar小波特征和多SVM(SupportVectorMachine)分类器的摩托车识别算法,以解决因样本比例不平衡所导致的对摩托车识别性能差的问题.首先在HSV颜色空间基于无符号小波系数构造特征提取算法,然后对训练数据应用所提出的样本重构方法得到若干训练子集,基于各个训练子集训练相应的SVM分类器,识别时将各SVM的输出结果进行融合即可得到最终识别结果.实验结果表明:该方法识别性能高,鲁棒性好,对于受数据的不平衡性严重影响的对象识别具有较好的应用和推广价值.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

文学志 郑钰辉 赵英男 吴毅.一种基于不平衡样本集的摩托车识别算法[J].南京信息工程大学学报(自然科学版),2010,(2):118-123
WEN Xue-zhi, ZHENG Yu-hui, ZHAO Ying-nan, WU Yi.[J]. Journal of Nanjing University of Information Science & Technology, 2010,(2):118-123

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-12-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司