

文刚1 周仿荣1 李涛2 马御棠1 裴凌2 刘亚东3 钱国超1 潘浩1

# LINS-GNSS:滤波与优化耦合的 GNSS/INS/ LiDAR 巡检机器人定位方法

#### 摘要

为了能够更加灵活地执行变电站巡检任 务,非固定线路的机器人巡检技术越来越受到 关注.如何在复杂的变电站环境中实现高精度 的定位是机器人在变电站执行巡检任务时需 要解决的核心问题.单一传感器难以满足变电 站可靠定位的要求,因此,本文设计了多传感 器融合的 LINS-GNSS 定位方法.其前端基于迭 代误差状态卡尔曼滤波框架将激光雷达和惯 性导航进行紧耦合,在每次迭代中生成新的特 征对应关系递归地校正估计状态,后端使用因 子图优化的方法将卫星导航的定位结果与 LINS 后端输出的定位结果松耦合.优化过程中 先将局部坐标系与全局坐标系对齐,再将卫星 导航的位置约束作为先验边添加到后端的因 子图中,最后将定位结果在全局坐标系下输 出.为了评估 LINS-GNSS 系统在变电站环境中 的性能,本文在实际变电站中进行了测试,实 验结果表明,LINS-GNSS 系统在变电站环境中 可以达到优于0.5m的定位精度,且比现有最 佳算法 LIO-SAM 定位精度更高.

#### 关键词

多传感器融合;因子图优化;卡尔曼 滤波;卫星导航;激光 SLAM

#### 中图分类号 V249.3 文献标志码 A

#### 收稿日期 2022-01-05

**资助项目**南方电网有限责任公司科技项目 (YNKJXM20191246);国家自然科学基金 (61873163);上海市科技创新行动计划项目 (20511103103) 作者简介

文刚,男,硕士,从事电网设备防灾减灾及 无人机导航技术研究.1192381484@qq.com 李涛(通信作者),男,博士生,从事多源

融合导航相关技术的研究.tao\_li@ sjtu.edu.cn

- 云南电网有限责任公司电力科学研究院/ 电力遥感技术联合实验室,昆明,650217
- 2 上海交通大学上海市北斗导航与位置服务重点实验室,上海,200240
- 3 上海交通大学 电子信息与电气工程学院, 上海,200240

# 0 引言

近年来,融合全球导航卫星系统(Global Navigation Satellite System, GNSS)<sup>[1]</sup>和惯性导航系统(Inertial Navigation System, INS)<sup>[2]</sup> 的组合定位系统已经被广泛地应用在室外定位场景中.GNSS 具有全 局性,能够在全球范围内提供导航定位服务,在室外场景的导航定位 中发挥着十分重要的作用.惯性测量单元 (Inertial Measurement Unit, IMU) 是测量物体加速度和角速度的传感器.由于 IMU 在导航推算时 具有更新频率高、受环境变化影响小的特点,所以常常被用来与各种 传感器进行融合.但是,在复杂的环境中,作为主要信息源的全球卫星 导航系统往往会由于遮挡或者电磁干扰而受到严重的多路径和非视 距(Non-Light-Of-Sight, NLOS)效应<sup>[3]</sup>影响,导致定位精度降低.而 IMU 在进行惯导推算时,误差会累积,最终导致定位结果发散.因此, 如何实现变电站环境下的精确定位是一个重要目具有挑战的问题.各 种融合定位方法的出现为解决这个问题提供了理想的方案<sup>[4]</sup>.GNSS 可以修正 INS 误差的积累,提高导航精度,而 INS 可以弥补 GNSS 的 信号丢失或衰减导致的定位性能下降问题,提高导航的连续性.基于 激光雷达的同步定位与建图 (LiDAR Simultaneous Localization and Mapping,LiDAR SLAM)<sup>[5-6]</sup>算法受光照影响较小,因此在变电站环境 中,3D LiDAR 可以用于检测由静态环境以及动态物体引起的 NLOS<sup>[7-8]</sup>,对 GNSS 定位起到辅助作用<sup>[9-10]</sup>.在变电站环境下,一般巡 检机器人巡航时除了需要获得定位结果外,还需要建立环境地图以 便之后导航使用[11].本文采用对卫星、惯导、激光雷达进行组合的方 法,对变电站中的机器人融合定位技术进行研究.整个融合定位算法 LINS-GNSS 的前端采用滤波框架,后端采用优化框架.本文研究中的 LINS (LiDAR-INS)<sup>[12]</sup>是基于迭代误差状态卡尔曼滤波<sup>[13]</sup> (iterative Error-State Kalman Filter, iterative ESKF) 的紧耦合 LiDAR-IMU 模型, 但是 LINS 本身不具备与 GNSS 融合的能力,故在长期工作时会发散, 且无法输出全球定位坐标.此外,LIO-SAM<sup>[14]</sup>(Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping)是一种基于因子图优化 的紧耦合 LiDAR-IMU 系统,并且该系统具备和 GNSS 进行松耦合的 能力,但其耗费的资源比基于滤波的算法要多.本文所提算法既能保 留滤波算法的轻量级又能实现高精度的全球定位.

本文的创新点如下:

1)提出 LINS-GNSS,其前端通过卡尔曼滤波将 LiDAR 和 IMU 紧耦合,后端通过因子图优化的方法 将 GNSS 与 LINS 进行松耦合.为了融合 GNSS 数据, 需要将 LINS 定位结果和 GNSS 定位结果进行坐标 系的对齐.

2)本文将 GNSS 因子加入后端的因子图进行优化后,将输出的结果与真值进行比较来评估系统性能且与现有最优算法 LIO-SAM 进行对比,在定位精度上 LINS-GNSS 超越了 LIO-SAM.

# 1 LINS-GNSS 算法总体架构

本文提出的 LINS-GNSS 算法具体架构如图 1 所示,按照 SLAM 系统的惯例,它被分为前端与后端两部分.LINS-GNSS 的前端是基于迭代误差状态卡尔曼滤波的 LiDAR/IMU 紧组合,其状态方程采用 IMU 在载体坐标系下的误差方程,观测方程由激光雷达的点特征和面特征两类特征共同约束构建.图 1 中浅蓝色框部分为 LINS-GNSS 的前端部分.LINS-GNSS 的后端是基于因子图优化的,通过将 LINS 的定位结果和 GNSS 的定位结果匹配并进行坐标转换后,构建位姿图进行后端位姿优化.

本文所涉及到的坐标系均在图 2 中给出.主要 坐标系有地心地固坐标系(Earth-Centered Earth-Fixed,ECEF)系,这是 GNSS 定位输出的系,一般采 用 WGS-84(World Geodetic System 1984)坐标系. ECEF 系的 X 轴指向赤道和本初子午线的交点;以 地球的旋转轴为 Z 轴,北极为正方向;Y 轴垂直于 X-Z 平面,形成右手坐标系.惯性测量单元 IMU 坐标系 为本文的载体系(Body 系, b 系);IMU 坐标系初始时 刻的坐标系记作  $b_0$ 系; IMU 坐标系初始时刻所在位置的东北天坐标系被设定为本文的 ENU 系(N 系). 激光雷达坐标系为本文的 LiDAR 系(l 系), l 系的 x 轴沿激光雷达水平轴向右, z 轴沿激光雷达纵轴向前, y 轴垂直于 X-Z 平面, 形成右手坐标系.

图 2 中涉及到如下几个外参数: IMU 和 LiDAR 之间的外参数  $\mathbf{R}_{l}^{b} \subseteq \mathbf{p}_{l}^{b}$ ; GNSS 天线相位中心在 IMU 系的坐标  $\mathbf{p}_{b}^{c}$ ; GNSS 天线相位中心在 LiDAR 系的坐 标  $\mathbf{p}_{l}^{c}$ .

#### 2 LINS-GNSS 前端算法

#### 2.1 点云分割

点云分割首先将一帧激光点云投影到深度图像 中.此图像的宽度为360°除以激光雷达水平分辨率, 高度为激光雷达线数.以使用 Velodyne-16 的激光雷 达为例,宽度为1800,高度为16.高度比较低的点会 被判断为地面点,地面点不进入到后续分割任务中, 以降低计算量.具体分割时,采用图像分割的方法将 深度图像进行聚类.聚类是通过深度优先遍历递归 进行查找,从[0,0]点开始,遍历它前、后、左、右的4 个点,分别进行对比,如果相对角度大于60°,则认为 是同一个点云集群.最后分割出来的点云数量大于 30 个则认为分割有效,点数过少的会被作为噪声滤 除,剩下的点根据深度图像的分割结果分类,用于后 续的特征提取.

#### 2.2 特征提取

本文提取的激光点云特征点分为两类,一类是 边缘点特征,一类是平面点特征.点云曲率是提取特 征点的表征,曲率较大的为边缘点特征,曲率较小的 为平面点特征.某一点的曲率通过在深度图像上找



Fig. 1 LINS-GNSS algorithm architecture

# **南京信息工だメ学**学报(自然科学版),2023,15(1):85-93

Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2023, 15(1):85-93



Fig. 2 The coordinate system involved in LINS-GNSS algorithm

其左边和右边各 5 个点共 11 个点计算.为了能从 360°方向提取特征点,深度图像被分成了 6 个子图, 在每个子图中都计算特征点.在每个子图的每一行 中,选取曲率最大且不属于地面点的 2 个点作为边 缘点特征;选取曲率最小的 4 个点作为平面点特征. 将 6 个深度子图的特征点进行整理后便得到此帧激 光点云的特征点.得到的特征点云通过点到直线和 点到平面的迭代最近点算法进行点云匹配.

#### 2.3 状态传递

IMU 在载体坐标系下的状态为  $t_k$  时刻到  $t_{k+1}$  时 刻的位置  $p_{t_k b_{t_{k+1}}}^b$ 、速度  $v_{b_{t_{k+1}}}^{b_{t_k}}$ 、姿态四元数  $q_{b_{t_{k+1}}}^{b_{t_k}}$ ,  $t_{k+1}$  时 刻的加速度计零偏  $b_{a_{t_{k+1}}}$ 、陀螺仪零偏  $b_{g_{t_{k+1}}}$ 以及重力 加速度在 $t_k$  时刻的 IMU 系下的投影 $g_{t_k}$ 、其中姿态四 元数  $q_{b_{t_{k+1}}}^{b_{t_{k+1}}}$  对应的旋转矩阵形式为  $R_{b_{t_{k+1}}}^{b_{t_{k+1}}}$ .

$$\mathbf{x}_{b_{t_{k+1}}}^{b_{t_k}} = [\mathbf{p}_{b_{t_{k+1}}}^{b_{t_k}}, \mathbf{v}_{b_{t_{k+1}}}^{b_{t_k}}, \mathbf{q}_{b_{t_{k+1}}}^{b_{t_k}}, \mathbf{b}_{a_{t_{k+1}}}, \mathbf{b}_{g_{t_{k+1}}}, \mathbf{g}_{t_k}].$$
 (1)  
前端滤波框架所采用的状态为 IMU 在载体坐

标系下的误差状态:

$$\delta \boldsymbol{x}_{b_{l_{k+1}}}^{o_{t_k}} = [\delta \boldsymbol{p}_{b_{l_{k+1}}}^{o_{t_k}}, \delta \boldsymbol{v}_{b_{l_{k+1}}}^{o_{t_k}}, \delta \boldsymbol{\theta}_{b_{l_{k+1}}}^{o_{t_k}}, \delta \boldsymbol{b}_{a_{t_{k+1}}}, \delta \boldsymbol{b}_{g_{t_{k+1}}}, \delta \boldsymbol{g}_{t_k}].$$
(2)

连续时间的误差状态递推方程:

$$\boldsymbol{G}(t) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -\boldsymbol{R}_{t}^{b_{k}} & 0 & 0 & 0 \\ 0 & -\boldsymbol{I}_{3} & 0 & 0 \\ 0 & 0 & \boldsymbol{I}_{3} & 0 \\ 0 & 0 & 0 & \boldsymbol{I}_{3} \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
(5)  
$$\boldsymbol{w} = [\boldsymbol{n}_{a}^{\mathrm{T}}, \boldsymbol{n}_{b}^{\mathrm{T}}, \boldsymbol{n}_{b_{a}}^{\mathrm{T}}, \boldsymbol{n}_{b_{a}}^{\mathrm{T}}]^{\mathrm{T}},$$
(6)

其中:  $I_3$  为3×3的单位矩阵,  $[\hat{a}_t]_x$  为经过零偏修正的加速度计测量对应的反对称矩阵,  $[\hat{\omega}_t]_x$  为经过 零偏修正的陀螺仪测量对应的反对称矩阵,  $[\hat{\omega}_t]_x$  为经过 零偏修正的陀螺仪测量对应的反对称矩阵,  $R_{b_t^{t_k}}^{b_{t_k}}$  表示  $t_k$  时刻到 t 时刻姿态变化的旋转矩阵形式,  $n_a^{T}$  表示加 速度计的噪声,  $n_g^{T}$  表示陀螺仪的噪声,  $n_{b_a}^{T}$  表示加速 度计零偏随机游走噪声,  $n_{b_g}^{T}$  表示陀螺仪零偏随机游 走噪声.

将连续时间的误差状态递推方程进行离散化得 到离散的误差状态递推方程:

$$\delta \boldsymbol{x}_{t_{k+1}} = (\boldsymbol{I}_{18} + \boldsymbol{F}(t_{k+1}) (t_{k+1} - t_k)) \delta \boldsymbol{x}_{t_k}, \quad (7)$$

 $P_{t_{k+1}} = (I_{18} + F(t_{k+1})(t_{k+1} - t_{k}))P_{t_{k0}}(I_{18} + F(t_{k+1}) \cdot (t_{k+1} - t_{k}))^{T} + (G(t_{k+1})\Delta t)Q(G(t_{k+1})\Delta t)^{T},$ (8) 其中 Q 矩阵为 w<sup>T</sup>w, I<sub>18</sub>为 18 × 18 的单位矩阵.

#### 2.4 状态更新

本文通过激光雷达在 $t_k$ 帧和 $t_{k+1}$ 帧的边缘点特征和平面点特征对状态 $\delta x_{b_{t_k}}^{b_{t_k}}$ 进行更新.

边缘点特征对应的观测方程由点到直线之间的 距离来计算:

$$f_{i}^{e}(\boldsymbol{x}_{b_{t_{k+1}}}^{b_{t_{k}}}) = \frac{\left| \left( \hat{\boldsymbol{p}}_{i}^{l_{t_{k}}} - \boldsymbol{p}_{a}^{l_{t_{k}}} \right) \times \left( \hat{\boldsymbol{p}}_{i}^{l_{t_{k}}} - \boldsymbol{p}_{b}^{l_{t_{k}}} \right) \right|}{\left| \boldsymbol{p}_{a}^{l_{t_{k}}} - \boldsymbol{p}_{b}^{l_{t_{k}}} \right|},$$
(9)

 $\hat{p}_{i^{t_{k}}}^{t_{k}}$ 时刻第 i 个点  $p_{i^{t_{k}}}^{t_{k}}$ 在 $t_{k+1}$ 时刻对应的点,计算方法为

$$\hat{p}_{i^{l_{l_{k}}}}^{l_{l_{k}}} = R_{b}^{l} \left( R_{b_{l_{k+1}}}^{b_{l_{k}}} (R_{l}^{b} p_{i^{l_{k+1}}}^{l_{l_{k+1}}} + p_{l}^{b}) + p_{b_{l_{k+1}}}^{b_{l_{k}}} - p_{l}^{b} \right), \quad (10)$$

于是就可以得到 $\hat{p}_{i^{t}}^{t_{t}}$ 关于误差状态 $\delta x_{b_{t_{k+1}}}^{o_{t_k}}$ 各个分重导数的非零部分:

$$\frac{\partial \hat{\boldsymbol{p}}_{i}^{b_{t_{k}}}}{\partial \delta \boldsymbol{p}_{b_{t_{k+1}}}^{b_{t_{k}}}} = \boldsymbol{R}_{b}^{l}, \qquad (11)$$

$$\frac{\partial \boldsymbol{p}_{i}^{b_{t_{k}}}}{\partial \delta \boldsymbol{\theta}_{b_{t_{k+1}}}^{b_{t_{k}}}} = -\boldsymbol{R}_{b}^{l} \left( \boldsymbol{R}_{b_{t_{k+1}}}^{b_{t_{k}}} \left( \boldsymbol{R}_{l}^{b} \boldsymbol{p}_{i}^{l_{t_{k+1}}} + \boldsymbol{p}_{l}^{b} \right) \right)_{\times}, \qquad (12)$$

 $p_{a}^{l_{t_{k}}}$ 和 $p_{b}^{l_{t_{k}}}$ 是 $p_{i}^{l_{t_{k}}}$ 最接近的两个点.线性化后的雅克比 矩阵为

$$\boldsymbol{H}_{t_k}^e = \frac{\partial \boldsymbol{f}_i^e}{\partial \boldsymbol{\hat{p}}_i^{t_k}} \cdot \frac{\partial \boldsymbol{\hat{p}}_i^{t_{t_k}}}{\partial \delta \boldsymbol{x}} =$$

$$\frac{\left[\left(\hat{\boldsymbol{p}}_{i^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{a^{k}}^{l_{t_{k}}}\right)\times\left(\hat{\boldsymbol{p}}_{i^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{b^{k}}^{l_{t_{k}}}\right)\right]^{\mathrm{T}}\left(\boldsymbol{p}_{b^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{a^{k}}^{l_{t_{k}}}\right)\times}{\left|\left(\hat{\boldsymbol{p}}_{i^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{a^{k}}^{l_{t_{k}}}\right)\times\left(\hat{\boldsymbol{p}}_{i^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{b^{k}}^{l_{t_{k}}}\right)\right|\left|\boldsymbol{p}_{a^{t_{k}}}^{l_{t_{k}}}-\boldsymbol{p}_{b^{k}}^{l_{t_{k}}}\right|}\cdot\frac{\partial \hat{\boldsymbol{p}}_{i^{t_{k}}}^{l_{t_{k}}}}{\partial \delta \boldsymbol{x}}.$$
 (13)

平面点特征对应的观测方程由点到平面之间的 距离来计算:

$$\boldsymbol{H}_{l_{k}}^{p} = \frac{\partial \boldsymbol{f}_{i}^{p}}{\partial \boldsymbol{\hat{p}}_{i}^{l_{k}}} \cdot \frac{\partial \boldsymbol{\hat{p}}_{i}^{l_{l_{k}}}}{\partial \delta \boldsymbol{x}} = \frac{\left[\left(\boldsymbol{\hat{p}}_{i}^{l_{k}} - \boldsymbol{p}_{a}^{l_{k}}\right) \times \left(\boldsymbol{\hat{p}}_{i}^{l_{k}} - \boldsymbol{p}_{b}^{l_{k}}\right)\right]^{\mathrm{T}}}{\left|\left(\boldsymbol{\hat{p}}_{i}^{l_{k}} - \boldsymbol{p}_{a}^{l_{k}}\right) \times \left(\boldsymbol{\hat{p}}_{i}^{l_{k}} - \boldsymbol{p}_{b}^{l_{k}}\right)\right|^{\mathrm{T}}} \cdot \frac{\partial \boldsymbol{\hat{p}}_{i}^{l_{k}}}{\partial \delta \boldsymbol{x}}, \quad (15)$$

其中 $\frac{\partial \hat{p}_{i^{*}}}{\partial \delta x}$ 与边缘点特征对状态的雅克比矩阵是一样

# 的,这里不再赘述.

点到直线的距离 f<sub>i</sub>(**x**<sup>b<sub>tk</sub></sup><sub>b<sub>tk+1</sub>) 和点到平面的距离 f<sub>i</sub>(**x**<sup>b<sub>tk</sub></sup><sub>b<sub>tk+1</sub>) 将被作为卡尔曼滤波中的观测量,**H**<sup>e</sup><sub>tk</sub>和**H**<sup>e</sup><sub>tk</sub> 描述了卡尔曼滤波的观测量与需要估计的状态之间 的线性化关系,随后进行标准卡尔曼滤波即可.此 外,由于预测是通过 IMU 进行的,故在高动态的状 态下,激光雷达会产生较大的畸变,此时 IMU 可以 提供一个大致的位姿估计,从而辅助激光雷达特征 点之间的匹配.</sub></sub>

# 3 LINS-GNSS 后端优化

后端优化算法框架主要包括后端建图、坐标转换、因子图优化3个部分.后端建图是将特征点与周围点云图进行精确配准,以获得更精确的位姿.坐标转换是将后端建图输出的更精确的位置与 GNSS 定位结果进行坐标转换,都统一到同一坐标系下.因子图优化是对一个由后端建图输出的位姿与 GNSS 定位结果构建而成的位姿图进行优化.

#### 3.1 后端建图

选取在时序上较为相近的一些时刻特征点构建 对应的全局点云地图.通过优化当前时刻特征点与 全局点云地图的特征点之间的位姿约束,可以精细 化后端建图输出的载体位姿.此优化问题的初值为 前端激光雷达与 IMU 迭代误差卡尔曼滤波紧耦合 输出的载体位姿.

后端建图的过程中,也可以通过回环检测来进 一步消除漂移,回环检测是通过迭代最近点算法匹 配当前帧和之前的点云,添加新的空间约束,然后通 过因子图来优化位姿图.

#### 3.2 坐标转换

通过后端建图,可以获得当前时刻 IMU 坐标系 相对于 IMU 初始坐标系(IMU<sub>0</sub>系)的坐标.GNSS 接 收机得到的是 GNSS 天线相位中心相对于 WGS-84 系的坐标值,给此坐标值赋予导航计算机时间戳即 可获得有导航计算机时间戳的卫星导航定位结果. 通过时间戳将后端建图输出的定位结果和卫星导航 接收机输出的定位结果进行内插和外推,可以获得 一系列同时刻的 IMU 在 IMU<sub>0</sub>系下的位姿和 GNSS 在 WGS-84 系下的坐标,分别记作: { $p_{b_0}^{b_0}$ , $R_e^{b_1}$ , $m_{b_0}^{b_1}$ ,  $R_e^{b_1}$ , $\dots$ , $p_{b_0}^{b_n}$ , $R_e^{b_1}$ , $m_{b_0}^{c_0}$ , $p_{c_1}^{c_2}$ , $\dots$ , $p_{c_n}^{c_n}$ }.

于是通过构建优化函数可以求出 $b_0$ 系相对于 WCS-84 系的转换参数 { $p_{e_0}^{b_0}$ ,  $R_{e_0}^{b_0}$ }<sup>[10]</sup>:

$$\underset{e}{\operatorname{argmin}} \overset{\operatorname{argmin}}{\underset{e}{\operatorname{SO(3)}}} \overset{n}{\underset{p}{\overset{b}{\underset{i=1}}{}}} |\boldsymbol{m}|^{2}, \qquad (16)$$

式中,  $m = p_{b_0}^{b_i} - R_{b_0}^{b_i} (R_e^{b_0} p_e^{G_i} + p_e^{b_0} - p_{b_i}^{b_0})$ .

上述问题可转化成一个迭代最近点(Iterative Closest Point, ICP)问题:

$$\frac{\operatorname{argmin}}{\boldsymbol{R}_{e}^{b_{i}} \in \operatorname{SO(3)}, \boldsymbol{R}_{b_{0}}^{b_{i}} \boldsymbol{p}_{e}^{b_{0}} \sum_{i=1}^{n} |\boldsymbol{n}|^{2}, \qquad (17)$$

式中,  $\boldsymbol{n} = \boldsymbol{p}_{b_0}^{b_i} + \boldsymbol{R}_{b_0}^{b_i} \boldsymbol{p}_{b_i}^{b_0} - (\boldsymbol{R}_e^{b_0} \boldsymbol{p}_e^{G_i} + \boldsymbol{R}_{b_0}^{b_i} \boldsymbol{p}_e^{b_0}).$ 

通过解上述优化问题就能获得 WGS84 坐标系和 IMU<sub>0</sub>系之间的坐标转换,此参数为后续因子图优化模型中的一个重要参数.

#### 3.3 因子图优化模型

LINS-GNSS 后端通过构建因子图优化模型对全体坐标进行优化.所构建的因子图模型如图 3 所示. 其中 GNSS 数据是直接通过 GNSS 接收机输出获得的,在本文实验中,采用的是 RTK(实时动态载波相位差分, Real-Time Kinematic)定位技术.GNSS 测量因子内容为卫星导航定位结果,LINS 位姿测量因子包括 LINS 所估计的局部位置和姿态解算结果.

这将定位问题抽象成了一个由节点、边组成的 双射图,其中节点包含状态节点和测量节点两种.当 状态与测量有关系时,它们之间就会有一条边存在.

残差方程包括两部分,  $r_1$ 为 GNSS 位置与 LINS 位置的差:

$$\boldsymbol{r}_{1} = \boldsymbol{r}_{\text{GNSS\_LINS}} = \boldsymbol{R}_{\mathcal{M}}^{\mathcal{N}} (\boldsymbol{R}_{\mathcal{L}}^{\mathcal{M}} \boldsymbol{P}_{\mathcal{G}}^{\mathcal{L}} + \boldsymbol{t}_{\mathcal{L}}^{\mathcal{M}} - \boldsymbol{t}_{\mathcal{N}}^{\mathcal{M}}) - \boldsymbol{P}_{\mathcal{G}}^{\mathcal{N}}, \qquad (18)$$

r为LINS先验位姿残差:

$$\boldsymbol{r}_{2} = \boldsymbol{r}_{\text{LINS\_prior}} = \begin{bmatrix} \mathcal{R}_{\mathcal{M},i}^{\mathcal{L}}(\boldsymbol{t}_{\mathcal{L},j}^{\mathcal{M}} - \boldsymbol{t}_{\mathcal{L},i}^{\mathcal{M}}) \\ \log(\boldsymbol{R}_{\mathcal{M},i}^{\mathcal{L}}\boldsymbol{R}_{\mathcal{L},j}^{\mathcal{M}})^{\vee} \end{bmatrix}, \quad (19)$$

#### 前京信息 エビス学学报(自然科学版),2023,15(1):85-93 Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(1):85-93



图 3 LINS-GNSS 后端位姿图模型 Fig. 3 Pose graph model in the back-end of LINS-GNSS

其中  $\mathbf{R}_{M}^{N}$  和  $\mathbf{t}_{N}^{M}$  为当地东北天坐标系与 LINS 坐标系 之间的转换参数,  $\mathbf{P}_{c}^{N}$  为 GNSS 定位结果在当地东北 天坐标系下的结果,  $\mathbf{P}_{c}^{c}$  为 GNSS 天线相位中心在激 光雷达坐标系下的位置,  $\mathbf{t}_{c}^{M}$  为 LINS 输出的位置结 果,  $\mathcal{R}_{M,i}^{c}$  为 *i* 时刻的 LINS 的姿态输出,  $\mathbf{t}_{c,j}^{M}$  为 *j* 时刻 LINS 的位置输出,  $\mathbf{t}_{c,i}^{M}$  为 *i* 时刻 LINS 的位置输出.

# 4 实验结果及分析

为验证 LINS-GNSS 算法在变电站环境中的性能,本文将搭载了 16 线激光雷达、9 轴 IMU 和 GNSS 接收机的巡检机器人在变电站中进行导航定位实验,并将 LINS-GNSS 的定位结果与 RTK/INS 结果(即真值)作对比.同时 LIO-SAM 在同一份数据上也进行了定位实验,其定位所得轨迹作为对比实验结果.实验环境以及对应数据采集如图 4 所示.



图 4 变电站环境以及数据采集载体 Fig. 4 Substation environment and data collection carrier

实验环境经过三维激光建模以后获得的结果如 图 5 所示.

从图 5 可见电线杆是会被激光雷达扫描出来



图 5 变电站环境三维点云地图 Fig. 5 3D point cloud map of substation environment

的,并且整个环境也还算开阔,GNSS 接收机可以提 供一个较为准确的值.而在运动激烈时,IMU 的输入 可以提供一个位姿初值从而辅助 LiDAR 进行点云 的匹配.综上所述,在如图 4 所示的变电站环境中, GNSS/INS/LiDAR 是一个很好的组合导航方案.但是 GNSS 会受到电磁干扰的影响,本文在电网环境中进 行了静态 RTK 测试,发现 RTK 定位结果和真实坐标 的水平定位中误差为8 mm,高程定位中误差 15 mm. 这一误差水平对 RTK 来说是比较大的,其中部分误 差为电磁干扰所带来的影响.为此在同一位置电网 断电情况下进行对比实验,最终发现 RTK 定位结果 和真实坐标的水平定位中误差为 3 mm,高程定位中 误差 6 mm,显著低于通电情况.

# 4.1 实验设置

实验使用激光雷达为 Velodyne16, IMU 为 Xsens Mti300,用于 LINS-GNSS 系统的卫星导航接收机为 u-blox ZED-F9P,用作定位真值的设备为 Novatel 的 SPAN-CPT 组合导航系统,在采集真值数据时, SPAN-CPT 设备中配置了 RTK.

# 4.2 标定实验

在 LINS-GNSS 算法中, IMU 的噪声参数以及 IMU 和 LiDAR 之间的外参是比较重要的参数,需要 进行事先标定.

本节将会给出本文所用设备的 IMU 噪声参数 标定结果和 LiDAR/IMU 外参标定结果.IMU 的误差 分为确定性误差与随机误差,确定性误差比如零偏 一般在 SLAM 系统会作为一个重要参数进行估计, 因而在标定实验中只需对 IMU 的随机误差进行标 定,包括加速度与角速度的噪声误差与随机游走,这 两个参数在本文中也被称作 IMU 噪声参数.本文所 标定的 IMU 噪声参数如表 1 所示.IMU 内参通过 Allan 方差法进行标定.

| Table 1  | IMU noise parameters             |                             |  |
|----------|----------------------------------|-----------------------------|--|
| 参数名称     | 参数符号                             | 参数单位                        |  |
| 陀螺白噪声    | $\sigma_{ m g}$                  | $rad/(s \cdot \sqrt{Hz})$   |  |
| 加速度计白噪声  | $\sigma_{a}$                     | $m/(s^2 \cdot \sqrt{Hz})$   |  |
| 陀螺随机游走   | $\sigma_{\scriptscriptstyle bg}$ | $rad/(s^2 \cdot \sqrt{Hz})$ |  |
| 加速度计随机游走 | $\sigma_{\scriptscriptstyle ba}$ | $m/(s^3 \cdot \sqrt{Hz})$   |  |

表1 IMU 噪声参数

#### 4.2.1 IMU 噪声参数标定结果

通过将实验设备静止 2 h,并使用 Allan 方差对 实验数据进行处理,得到 Allan 方差曲线如图 6—7 所示.



图 6 中的 acc-x、acc-y、acc-z 分别表示加速度计 的 x 轴、y 轴和 z 轴.图 7 中的 gyr-x、gyr-y、gyr-z 分别 表示陀螺仪的 x 轴、y 轴和 z 轴.根据图 6 和图 7 可以 得到如表 2 所示的 IMU 噪声参数标定结果.

4.2.2 LiDAR/IMU 外参标定

本文使用 LI-calib 工具箱<sup>[15]</sup> 对 LiDAR 和 IMU 进行外参标定,外参标定的目的是用于校准 LiDAR



表 2 IMU 噪声参数标定结果

Table 2 IMU noise parameters calibration results

| 加速度计 | 加速度白噪声  | 5.4×10 <sup>-3</sup> m/(s <sup>2</sup> · $\sqrt{\text{Hz}}$ )         |
|------|---------|-----------------------------------------------------------------------|
|      | 加速度随机游走 | $1.8 \times 10^{-4} \text{ m/}(\text{s}^3 \cdot \sqrt{\text{Hz}})$    |
| 陀螺仪  | 角速度白噪声  | 1. $6 \times 10^{-3} \text{ rad/}(\text{s} \cdot \sqrt{\text{Hz}})$   |
|      | 角速度随机游走 | 4. $1 \times 10^{-5} \text{ rad/}(\text{s}^2 \cdot \sqrt{\text{Hz}})$ |

和 IMU 之间的 6 个自由度 (6 Degrees of Freedom, 6DoF)的刚体变换参数.LI-calib 的流程如图 8 所示, 它在连续时间批量优化框架中利用来自 LiDAR 和 IMU 传感器的所有原始测量值进行标定.流程主要 分为 4 个步骤:外部旋转初始化、数据关联、批次优 化和迭代校准.

首先将来自 LiDAR 和 IMU 旋转序列对齐来初 始化外部旋转,其中 LiDAR 的旋转是从基于正态分 布变换(NDT)配准的 LiDAR 里程计获得的.给定来 自 IMU 传感器的原始角速度测量值可以拟合旋转 B 样条曲线.

初始化后,能够部分消除 LiDAR 扫描中的运动



Fig. 8 LI-calib process

失真,并能够从 LiDAR 测距中获得更好的 LiDAR 姿态估计.使用 LiDAR 姿态初始化 LiDAR 面元地图, 再初始化点对面元的对应关系.

批处理优化是使用 LiDAR 和 IMU 量测将标定 问题转化成基于图的优化问题,并假设所有测量结 果均具有独立的高斯噪声.

最后利用优化中当前的最佳估计状态更新面元 图,点对平面数据关联,并迭代地优化估计状态.通 过连续时间批次优化,状态估计变得更加精确.

通过采集一小段运动充分的数据,即可获得 Li-DAR/IMU 外参标定结果.为了使得结果具备可信 度,总共采集 5 组数据并进行实验,实验的过程如图 9 所示,其中彩色的为程序所提取的面特征,白色的 线条为提取的线特征.



图 9 LiDAR/IMU 外参标定过程 Fig. 9 LiDAR/IMU extrinsic calibration process

在外参估计实验中,估计所得的外参稳定性非 常重要,而内符合精度以估计的最似然估值为比对 基准,主要反映离散度,故可以很好地用来作为评判 稳定性的指标.对同一个 LiDAR/IMU 设备进行 5 次 外参标定实验,然后统计 5 个结果的均值和标准差 来反映内符合精度.结果如表 3 所示,数据格式为: 均值±标准差.

表 3 LiDAR/IMU 外参标定结果

Table 3 LiDAR/IMU extrinsic calibration results

| <i>x/</i> m     | y∕m             | <i>z/</i> m      |
|-----------------|-----------------|------------------|
| 0.043 6±0.011 6 | 0.068 7±0.019 6 | -0.133 5±0.024 1 |
| roll/(°)        | pitch/(°)       | yaw∕ (°)         |
| 176.89±0.07     | 179.79±0.09     | -179.72±0.09     |

#### 4.3 定位实验

通过对比 LINS-GNSS 的结果和 RTK/INS 的结果,可以获得如图 10 和表 4 所示的结果.图 10 左边 为 LINS-GNSS 估计轨迹与真值轨迹对比,轨迹为在 ENU 坐标系下的轨迹,即图中的 X 轴对应东方向,Y 轴对应北方向,Z 轴对应高程方向,图 10 右边为 LINS-GNSS 三维误差序列.表 4 为 LINS-GNSS 的 3D 误差各项统计指标.

表4 LINS-GNSS 定位结果误差统计

Table 4 Error statistics of LINS-GNSS positioning results

|        |        |        |       | m     |
|--------|--------|--------|-------|-------|
| max    | mean   | median | rmse  | std   |
| 0. 471 | 0. 189 | 0. 167 | 0.211 | 0.093 |

表 4 中:max 误差表示误差的最大值,可以反映 定位的鲁棒性;mean 表示误差的均值,median 表示 误差的中位数,rmse 表示均方根误差,这三类误差一





般用来反映定位的精度; std 表示误差的标准差, 可以反映定位的稳定性.从表 4 可以看出, 在变电站环境中, LINS-GNSS 的算法能很好地获得定位结果, 其定位最大误差在 0.5 m 以内, 定位误差的均方差为 0.211 m, 满足大部分变电站内机器人的定位需求.

LIO-SAM 在这个实验中为对比实验组,其定位 结果的统计值如表 5 所示.

表 5 LIO-SAM 定位结果误差统计

Table 5 Error statistics of LIO-SAM positioning results

|       |       |        |       | m     |
|-------|-------|--------|-------|-------|
| max   | mean  | median | rmse  | std   |
| 0.515 | 0.198 | 0. 194 | 0.219 | 0.094 |

对比表 4 和表 5 可以看出,本文所提的 LINS-GNSS 算法,比最先进的 LIO-SAM 算法在变电站环 境下定位性能更优.

LINS-GNSS 算法和 LIO-SAM 算法的 ENU 三轴 误差和统计结果如图 11 和表 6 所示.



图 11 LINS-GNSS 和 LIO-SAM 东北天三轴误差分量序列 Fig. 11 Sequences of triaxial error components in ENU of LINS-GNSS and LIO-SAM

表 6 LINS-GNSS 和 LIO-SAM 三轴 RMSE 统计

Table 6 LINS-GNSS and LIO-SAM triaxial RMSE statistics

|           |       |       | m      |
|-----------|-------|-------|--------|
| 算法        | 东向    | 北向    | 天向     |
| LIO-SAM   | 0.124 | 0.102 | 0.148  |
| LINS-GNSS | 0.118 | 0.094 | 0. 147 |

从图 11 和表 6 中可以看出, LINS-GNSS 的三轴 误差均优于 LIO-SAM, 验证了本文所提算法的有效性.

#### 5 结论与未来展望

本文提出在变电站环境中融合 GNSS/INS/ LiDAR 的组合导航定位算法——LINS-GNSS,并在 真实变电站环境中进行测试.LINS-GNSS 算法架构 的创新点在于,其前端使用卡尔曼滤波紧耦合了 Li-DAR 和 IMU,后端用因子图优化松耦合了 GNSS,具 有松紧交替、滤波优化交替的特性.

为了使 LINS-GNSS 性能更好,本文事先对 IMU 的噪声参数以及 LiDAR/IMU 的外参进行了标定.最 终结果表明,LINS-GNSS 在本文实验所处变电站环 境中可以达到最大误差 0.5 m 以内,均方根误差 0.211 m 的定位精度,比现有的最优 GNSS/ INS/Li-DAR 组合导航算法 LIO-SAM 精度更高,充分证明了 LINS-GNSS 的有效性.

目前 LiDAR 和 IMU 是基于卡尔曼滤波的紧耦合,GNSS 是基于优化的松耦合,未来可以将 GNSS 原始信息融入紧耦合滤波框架.目前 GNSS 通过 RTK 获取的定位结果,未来可以使用 PPP 或者 PPP-RTK 等 GNSS 定位技术.

#### 参考文献

References

- [1] Groves P D.Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edition [J].IEEE Aerospace and Electronic Systems Magazine, 2015, 30(2): 26-27
- [2] Barbour N M.Inertial navigation sensors[R].Cambridge, MA:Charles Stark Draper Laboratory,2011
- Wen W S, Zhang G H, Hsu L T. Exclusion of GNSS NLOS receptions caused by dynamic objects in heavy traffic urban scenarios using real-time 3D point cloud: an approach without 3D maps [C]//2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). April 23 26, 2018, Monterey, CA, USA. IEEE, 2018: 158-165
- [4] Qin T, Cao S Z, Pan J, et al. A general optimization-based framework for global pose estimation with multiple sensors[J].arXiv e-print, 2019, arXiv:1901.03642
- [5] 高翔,张涛,刘毅.视觉 SLAM 十四讲:从理论到实践 [M].北京:电子工业出版社,2017:17-21
- [6] Chen C X, Pei L, Xu C Q, et al. Trajectory optimization of LiDAR SLAM based on local pose graph [C]//China Satellite Navigation Conference (CSNC) 2019 Proceedings, 2019
- [7] Hsu L T. Analysis and modeling GPS NLOS effect in highly urbanized area [J].GPS Solutions, 2017, 22(1): 1-12
- [8] Chen Y W, Zhu L L, Tang J, et al. Feasibility study of using mobile laser scanning point cloud data for GNSS line of sight analysis [J]. Mobile Information Systems,

# 南京信息工行大学学报(自然科学版),2023,15(1):85-93

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2023, 15(1):85-93

2017:5407605

- [9] Wen W S.3D LiDAR aided GNSS and its tightly coupled integration with INS via factor graph optimization [C]// The International Technical Meeting of the Satellite Division of the Institute of Navigation. September 22 - 25, 2020.Institute of Navigation, 2020;1649-1672
- [10] Li T, Pei L, Xiang Y, et al. P3-LOAM: PPP/ LiDARloosely coupled SLAM with accurate covariance estimation and robust RAIM in urban canyon environment [J].IEEE Sensors Journal, 2021, 21(5):6660-6671
- [11] 鄂盛龙,周刚,谭理庆,等.变电站环境下 GNSS 接收机 性能及观测数据质量分析[J].全球定位系统,2020, 45(4):36-41,48

E Shenglong,ZHOU Gang,TAN Liqing,et al.Analysis on GNSS receive performance and observation data quality in substation environment [J].GNSS World of China, 2020,45(4):36-41,48

- Qin C, Ye H Y, Pranata C E, et al. LINS: a lidar-inertial state estimator for robust and efficient navigation [C]// 2020 IEEE International Conference on Robotics and Automation. May 31-August 31, 2020, Paris, France. IEEE, 2020:8899-8906
- [13] Sola J. Quaternion kinematics for the error-state Kalman filter[J].arXiv e-print, 2017, arXiv:1711.02508
- [14] Shan T X, Englot B, Meyers D, et al. LIO-SAM: tightlycoupled lidar inertial odometry via smoothing and mapping[J].2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).October 24-30, 2020, Las Vegas, NV, USA.IEEE, 2020:5135-5142
- [15] Lü J J, Xu J H, Hu K W, et al. Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation [C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).October 24-30,2020, Las Vegas, NV, USA.IEEE, 2020:9968-9975

# LINS-GNSS: filter and optimization coupled GNSS/INS/LiDAR positioning method for inspection robot localization

WEN Gang<sup>1</sup> ZHOU Fangrong<sup>1</sup> LI Tao<sup>2</sup> MA Yutang<sup>1</sup> PEI Ling<sup>2</sup> LIU Yadong<sup>3</sup> QIAN Guochao<sup>1</sup> PAN Hao<sup>1</sup> 1 Electric Power Research Institute/ Joint Laboratory of Power Remote Sensing Technology,

Yunnan Power Grid Co., Ltd., Kunming 650217

2 Shanghai Key Laboratory of Navigation and Location-Based Services, Shanghai Jiao Tong University, Shanghai 200240

3 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240

**Abstract** In the past few years, robots have become an important means of substation inspection, and robotic inspection technology for non-fixed lines has received increasing attention in order to perform inspection tasks more flexibly. How to achieve high-precision positioning in complex substation environment is one of the core problems to be solved. It is difficult for a single sensor to meet the requirements of reliable positioning in substations, therefore, this paper designs a multi-sensor fusion LINS-GNSS positioning method. Its front-end tightly couples LiDAR and inertial navigation based on an iterative error-state Kalman filter framework, which recursively corrects the estimated state by generating new feature correspondences in each iteration. The back-end uses a factor graph optimization approach to loosely couple the localization results from the satellite navigation with the localization results output from the LINS back-end. The optimization process first aligns the local coordinate system with the global coordinate system, then adds the position constraints of the GNSS as a priori edge to the factor graph in the back-end, and finally outputs the positioning results in the global coordinate system. In order to evaluate the performance of the LINS-GNSS system in the substation environment, this paper conducted field tests under real scenarios. The experimental results show that the LINS-GNSS system can achieve a positioning accuracy better than 0.5 m in the substation environment, better than LIO-SAM.

Key words multi-sensor fusion; factor graph optimization; Kalman filter; satellite navigation; LiDAR-SLAM