DOI:10.13878/j.cnki.jnuist.2022.01.007

邓玲玲^{1,2} 王如海³ 吴电明^{1,2}

增温和互花米草入侵对崇明东滩湿地 土壤碳循环功能基因的影响

摘要

湿地生态系统碳循环过程对全球气候变 化具有重要影响.本文以崇明东滩湿地土壤为 研究对象,采用 GeoChip 技术检测土壤碳循环 关键功能基因,研究增温及互花米草入侵对湿 地土壤碳循环的影响及其与环境因子之间的 关系.结果表明:湿地土壤中碳循环功能基因 数量及丰度均高于其他各类别的基因:在相同 温度处理下 种植互花米草土壤的微生物群落 碳循环功能基因信号强度均高于种植芦苇土 壞;增温显著降低了大多数土壤碳循环功能基 因信号强度,包括碳降解、碳固定和甲烷代谢 等基本过程,但互花米草入侵及其与增温的交 互作用无显著影响(P>0.05):与对照相比,增 温显著降低了种植芦苇土壤的微生物群落碳 循环功能基因丰度,主要包括碳降解过程中的 $cda \exopolygalacturonase _fungi \rgh \xyla \xyla$ nase, cellobiase 和 endoglucanase 基因,以及碳固 定过程中与卡尔文循环相关的 rubisco 基因(P <0.01),但对互花米草土壤的微生物群落以 及互花米草与芦苇混种处理的影响不显著(P >0.05);土壤微生物碳循环功能基因与土壤 活性氮气体排放及土壤 pH 显著负相关(P< 0.05).总之,增温显著地改变了土壤碳循环功 能基因丰度 研究结果将为定量全球变暖对湿 地碳循环和温室气体排放的影响、实现碳中和 等提供数据支撑,也为湿地生态系统的保护和 管理提供科学依据.

关键词

碳循环;植物入侵;基因芯片;全球 变暖;碳中和

中图分类号 X171.1 文献标志码 A

收稿日期 2021-12-12

资助项目中央高校基本科研业务费专项资金 (2017—2021年);国家自然科学基金青年项 目(41807449);国家自然科学基金面上项目 (42077083)

作者简介

邓玲玲,女,硕士生,研究方向为土壤微生物氮循环.51193901006@stu.ecnu.edu.cn

吴电明(通信作者),男,博士,研究员,博 士生导师,研究方向为土壤氮循环与大气环 境.dmwu@geo.ecnu.edu.cn

0 引言

全球变暖是全球气候变化的最主要特征,也是当今世界面临的最 重要环境问题,是影响陆地生态系统碳循环过程的主要因素之一^[1].实 现中国碳达峰、碳中和目标,必须大力减少大气中的二氧化碳(CO₂),同 时增加生态系统碳汇是重要途径.湿地作为旱地和水生环境之间的过渡 地带,覆盖约5%~8%的地球陆地表面,但其占全球12%~24%的陆地碳 储量,碳汇功能强大,在降低大气 CO₂浓度、减缓全球气候变化中具有 重要作用^[26].近年来,科学家将滨海湿地等生态系统所固存的碳称为海 岸带"蓝碳"(blue carbon)^[2].研究发现,每平方千米的滨海湿地年碳埋 藏量预计可达 0.22 Gg(以 C 计),相当于 3.36×10⁵ L 汽油燃烧释放的 CO₂^[2,7].气温升高导致滨海湿地植物生长与演替变化,改变碳循环的生 产与分解过程,影响土壤碳库的分子结构特征,从而影响其固碳能 力^[2,8].湿地因其易变的动态异质环境与频繁的人类活动,是全球环境 变化的敏感区与生态系统的脆弱区,其碳汇功能在人类活动和环境变 化背景下的响应是当前的研究热点^[9-10].

互花米草(*Spartina alterniflora*)的入侵及扩张,是我国滨海湿地面临的严重生态问题之一.截至2015年,互花米草入侵面积在我国高达546 km²,其主要分布在江苏、浙江和上海等地^[11].在上海九段沙湿地,与当地优势种芦苇(*Phragmites australis*)相比,互花米草入侵增加了土壤碳汇强度与固碳能力^[12].但也有研究发现,互花米草入侵促进了湿地的 CO₂、甲烷(CH₄)和氧化亚氮(N₂O)等温室气体排放^[13].一般来说,互花米草入侵具有复杂的生态环境效应,因此探究湿地生态系统对互花米草入侵的碳响应具有重要意义^[14-15].

土壤微生物是生态系统的重要组成部分,在养分循环和维持生态系统功能等方面具有重要作用,能够直接或间接地影响生态系统与动植物健康^[16-17].微生物参与了多个碳循环代谢过程,包括碳降解(分解有机物的过程)、碳固定(将 CO₂转化为有机物的过程)和甲烷代谢(甲烷生成与氧化过程)等3个基本过程^[18].增温和互花米草人

¹ 华东师范大学 地理科学学院/地理信息科学教育部重点实验室,上海,200241

² 华东师范大学 崇明生态研究院,上海,202162

³ 中国科学院南京土壤研究所,南京,210008

侵能够改变土壤微生物活性、种群和群落结构与功能等^[19-20].研究表明,增温增加了土壤中真菌数量, 其中木质素的主要分解者是真菌,从而促进木质素 的氧化,降低了碳库稳定性^[21].因此,微生物群落在 环境变化背景下的碳循环响应与反馈机制对全球碳 循环、温室气体排放以及气候变化等至关重要.微生 物群落对碳循环的响应和反馈机制也是近年来研究 的热点之一.

微生物功能基因芯片(GeoChip)是一种高通量宏 基因组学分析工具,主要用于分析微生物的功能特 征,如不同代谢途径中相关的功能基因以及其对生态 系统功能的响应与反馈,被广泛应用于多种生态系统 研究中,如森林、草地和农田等生态系统^[22-25].但关于 湿地生态系统的研究较少,且在增温和互花米草入侵 双因子交互作用下土壤碳循环过程的微生物调控机 制尚不清楚.综上所述,本研究以不同种间竞争比例 (0:4、2:2和4:0)的互花米草和芦苇为研究对象,比较 其在开顶箱(Open-Top Chamber,OTC)增温处理2年 后表层土壤(0~5 cm)碳循环的代谢过程与功能基因 的变化及差异,从而为深入了解湿地土壤碳循环微生 物的代谢潜力及其对环境变化的响应,合理预测大气 CO,浓度变化等提供科学依据.

1 材料与方法

1.1 研究区概况与试验设计

增温和互花米草入侵试验地位于崇明岛东部华 东师范大学长江口湿地生态系统野外研究站(121° 58′E,31°38′N),该地所处东滩湿地位于长江入海 口,潮滩面积广阔,为咸淡水交汇区,平均海拔4.7 m.该研究区域属于典型亚热带季风气候区,年平均 气温15.3℃,年平均降雨量1049.3 mm,年平均蒸 发量718.0 mm.该区的植被类型以盐沼为主,芦苇 (*Phragmites australis*)和互花米草(*Spartina alterniflo*ra)为主要优势种.

通过田间微区试验模拟增温和互花米草入侵之 间的交互作用.微区试验建立于 2016 年,共包括 15 个地块,将其中 OTC 增温的地块作为增温处理(T), 其余的地块作为对照处理(NT),并在地块上分别种 植植株数量比例为4:0(P4)、2:2(P2S2)和0:4(S4) 的芦苇和互花米草,每种处理设置 3 个重复(表1). 开顶箱的施工与设计及其增温效果量化的详细信息 见文献[26].增温 2 年后,开顶箱中的空气温度比对 照处理下的空气温度约高出 1.5 ℃.

衣I 试验设计								
	Table 1 Experimental des	sign						
试验样品	芦苇(P):互花米草(S)	开顶箱增温处理						
NT-P4	4:0							
NT-P2S2	2:2	对照处理						
NT-S4	0:4	(11)						
T-P4	4:0							
T-P2S2	2:2	增温处理						
T-S4	0:4	(1)						

1.2 土壤采样与理化性质测定

于 2018 年 4 月采集表层土壤(0~5cm)样品.采 样时去除植物根系、动植物残体和小石块等,装入密 封袋;同时,用无菌取样勺采集 1~2g土壤样品,并 放入 2 mL 无菌 PVC 管,用于 GeoChip 分析.采集后 的土壤样品放入冰盒中,在 2 h 内运送至实验室低 温保存.其中,用于分析微生物的土壤样品储存在 -80 ℃ 的冰箱中,其他样品则储存在-20 ℃ 的冰箱 中.将其中部分样品风干、过 2 mm 筛,用于测量土壤 pH、含水量(SWC)、最大持水量、总碳(TC)、总有机 碳(TOC)、无机碳(IC)、总氮(TN)、总磷(TP)、铵盐 (NH₄)和硝酸盐(NO₃)、粒径组成、盐度、电导率及 活性氮气体(HONO、NO 和 NO₂)排放等.其中,土壤 理化性质的测定方法参考 Song 等^[26],盐度和电导率 的测定方法参考 Guo 等^[27],土壤活性氮气体排放测 定方法参考 Wu 等^[28].

1.3 土壤微生物功能基因分析

GeoChip 5.0 中的 60K 版本是一个包含 60 000 个探针的综合基因阵列.该版本针对基础物质循环 (碳、氮、磷和硫循环)、重金属抗性、抗生素抗性、致 病性、次生代谢及有机污染降解等相关的 12 个功能 类别下约 400 个关键的功能基因设计了大约 6 万种 探针^[29].其实验分析的具体步骤如下:

1) DNA 提取与定量:使用提取试剂盒 (Guangdong Magigene Biotechnology Co.,Ltd.,Guangzhou,China)按照说明提取相应土壤样品的基因组 DNA.DNA 质量由 Nanodrop One(Thermo Fisher Scientific,Waltham,USA)评估,最终的 DNA 浓度由 PicoGreen 用 FLUOstar Optima microplate reader(BMG Labtech,Jena,Germany)定量.

2) DNA 标记杂交与扫描:用随机引物和 DNA 聚合酶 I 的 Klenow 片段对纯化的 DNA 进行 Cy3 标 记.用 QIA 快速纯化试剂盒(Qiagen, Valencia, CA, USA)纯化标记的 DNA,随后在 50 ℃的 Labconco Centrivap Concentrator (Labconco Corp., Kansas City, MO)中干燥 45 min.将干燥的 DNA 稀释至相同浓 度,然后在 95 ℃下培养 5 min,并在 42 ℃下保持直 到杂交.随后,将标记的 DNA 置于阵列上,然后在杂 交站 (MAUI, BioMicro Systems, Salt Lake City, UT, USA)将阵列预热至 42 ℃至少 5 min,再将样品装载 到阵列表面并杂交大约 16 h.最后,用 NimbleGen MS200 扫描仪(Roche, Madison, WI, USA)对芯片进 行扫描,将得到的芯片信号用 ImaGene 6.0 软件 (Biodiscovery Inc., El Segundo, CA, USA)进行预处 理,之后将信号强度标准化.

3)数据标准化处理:移除信噪比<2的信号点 后得到原始探针信号强度,将原始探针信号强度进 行标准化得到标准化的探针信号强度,再将标准化 的探针信号强度中每个基因对应的所有探针信号强 度汇总,得到基因的信号强度^[30].

1.4 数据分析

使用 IBM SPSS Statistics 23 软件对相关数据进 行统计分析和显著性检验(独立样本 T 检验).使用 R 4.0.5 软件进行双因素方差分析(Two-way ANO-VA),用"psych"软件包计算斯皮尔曼(Spearman)相 关系数及显著性水平,并通过"corrplot"软件包进行 可视化.使用 Origin 软件作图.

2 结果与分析

2.1 增温和互花米草入侵对土壤微生物功能基因 和群落的影响

在18个土壤样品中检测到各类型功能基因共 425 920个,涉及到9个由微生物介导的关键代谢过 程,包括碳、氮、磷、硫等生物地球化学循环过程(表 2).增温处理下各类功能基因数量均显著低于对照 处理(表2、表3).与芦苇群落相比,增温处理下互花 米草入侵后的各类功能基因数量增加,对照处理下, 则表现为 P2S2 处理<P4 处理<S4 处理的趋势,但总 体而言,互花米草入侵对各类功能基因数量的影响 不显著(表2、表3).并且在增温和互花米草入侵的 交互作用下其差异也不显著(表3).

在各类功能基因的数量中,碳循环功能基因数 量最多,共检测到181441个与碳循环有关的功能基 因.如表4和图1所示,增温处理下碳循环功能基因 信号强度显著低于对照处理,其中芦苇群落表现最 为敏感,温度升高后其碳循环功能基因信号强度显 著降低(P<0.05),但是互花米草入侵及其与增温的 交互作用并无显著差异(P>0.05).碳循环基因中的 古菌、细菌和真菌群落均受到温度的显著影响(P< 0.05),具体表现为在增温处理下其功能基因信号强 度降低,其中种植芦苇土壤的微生物群落差异最为 显著.相较于互花米草而言,芦苇土壤中的微生物群 落对温度更为敏感.碳循环基因中的古菌、细菌和真 菌群落在互花米草入侵及其与增温的交互作用下差 异不显著(P>0.05,表4和图2a).

本研究中检测了微生物驱动的碳降解、碳固定 和甲烷代谢3个碳循环代谢过程基因.如表4所示, 结果表明增温显著影响碳降解、碳固定和甲烷代谢 基因(P<0.05),但互花米草入侵及其交互作用的影 响不显著(P>0.05).如图3所示,温度升高后P4、 P2S2和S4处理土壤的微生物群落碳降解、碳固定 和甲烷代谢基因信号强度下降,其中增温显著降低 了P4处理土壤的微生物群落中碳降解、碳固定和甲 烷代谢的基因信号强度(P<0.05),以及P2S2处理 土壤的微生物中甲烷代谢相关基因(P<0.05),而对 S4处理中的碳循环代谢过程影响不显著(P>0.05).

	表 2	Ŧ	壤微	生!	物功	閒	這	达	数量	
~	NT	1	c	•1		1	• •	c		1

		Table 2 Inun	nder of soli microdia	ai iunctional genes		
功能基因	T-P4	NT-P4	T-P2S2	NT-P2S2	T-S4	NT-S4
碳循环	9 523.67±394.88	10 837.00±367.79	9 769.67±332.50	10 475.00±103.35	10 132.33±70.90	11 573.67±790.61
氮循环	2 844.67±124.39	3 227.00±98.90	2 911.00±107.35	3 115.00±35.22	3 027. 33±16. 76	3 463.67±240.58
磷循环	960.00±35.70	1 085.00±36.30	981.33±33.03	1 055.67±11.26	1 014.00±13.08	1 138.33±76.08
硫循环	1 883.00±85.77	2 151.00±75.25	1 925.33±65.53	2 076.67±22.23	2 001.67±21.61	2 311.67±168.29
有机污染降解	5 083.00±216.73	5 692.00±162.90	5 204.00±172.53	5 536.67±58.02	5 377.67±34.41	5 986.67±376.78
次生代谢	39.33±1.67	45.00±1.73	41.67±0.67	44.00±0.58	42.33±0.88	46.67±1.76
重金属抗性	1 634.67±61.43	1 821.33±54.76	1 655.33±60.31	1 771.67±19.92	1 723.00±18.08	1 937. 33±122. 11
致病性	366. 67±16. 41	415.00±8.96	382.33±13.53	395.67±3.76	389.67±1.76	434.67±27.51
其他类别	94.00±2.65	108.33±4.63	98.67±3.18	101.67±2.60	98.67±1.67	126.33±15.77

注:试验处理参见表1;数据为平均值±标准误差.

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1):62-76

表 3 增温和植物入侵对功能基因数量的 主要影响及其交互作用

Table 3 The main and interactive effects of experimental warming and plant invasion on the number of functional genes

功能基因	增	温	植物	1入侵	增温×植物入侵	
	F	<i>P</i> 值	F	<i>P</i> 值	F	<i>P</i> 值
碳循环	10.14	0.007	0.64	0.437	0.10	0.759
氮循环	9.39	0. 008	0.63	0.442	0.07	0.796
磷循环	10.41	0. 006	0.49	0.495	0.13	0.723
硫循环	10.03	0. 007	0.58	0.460	0.05	0.822
有机污染降解	9.11	0. 009	0.58	0.458	0.15	0.709
次生代谢	14.39	0.002	1.70	0.213	1.03	0.327
重金属抗性	9.17	0. 009	0.53	0.480	0.03	0.862
致病性	7.81	0.014	0.52	0.482	0.50	0. 489
其他类别	5.26	0. 038	0.56	0.469	0.01	0.944

注:差异性检验采用双因素方差分析,F表示检验统计量,P值中加粗斜体值表示差异显著(P<0.05).

表 4 增温和植物入侵对微生物群落信号强度的 主要影响及其交互作用

Table 4 The main and interactive effects of experimental warming and plant invasion on microbial community signal intensity

微生物碳循环	增温		植物	1入侵	增温×植物入侵	
	F	<i>P</i> 值	F	<i>P</i> 值	F	<i>P</i> 值
碳循环基因	13.45	0.003	0.77	0.394	1.05	0.323
古菌	13.07	0.003	0.63	0.439	0.66	0.430
细菌	13.14	0. 003	0.78	0.393	1.10	0.313
真菌	14.87	0.002	0.77	0.395	0.90	0.360
碳降解	13.26	0. 003	0.77	0.395	1.05	0.322
古菌	10.35	0. 006	0.05	0.829	0.55	0.471
细菌	12.78	0. 003	0.81	0.385	1.11	0.310
真菌	14.87	0.002	0.77	0.395	0.90	0.360
碳固定	13.60	0.002	0.72	0.411	1.05	0.324
古菌	9.28	0. 009	0.43	0.522	0.50	0.489
细菌	13.85	0.002	0.71	0.414	1.07	0.318
甲烷代谢	15.94	0. 001	1.35	0.266	0.78	0.392
古菌	17.17	0. 001	1.99	0.181	0.78	0.391
细菌	13.02	0. 003	0.68	0.424	0.77	0.395
计关品性协同	人全田 70	田寿亡	关八折	下去一枚	いいなけ	号 D 估山

任: 差开性检验术用从因系力差分制,F 私小检验统计量,F 化加粗斜体值表示差异显著(P<0.05).

2.2 增温和互花米草入侵对土壤碳降解关键功能 基因的影响

主要选取淀粉(Starch)、果胶(Pectin)、半纤维 素(Hemicellulose)、纤维素(Cellulose)、几丁质 (Chitin)和木质素(Lignin)等天然碳化合物降解过 程.检测出的碳降解菌群主要包括细菌、真菌和古菌 3大类,其中以细菌群落为主(图 2c).细菌的优势门 为放线菌门(Actinobacteria)和变形菌门(Proteobacteria),共占碳降解细菌的 60%以上,其中与淀粉、半 纤维素和几丁质降解有关基因大多来源于放线菌门

of carbon cycle functional genes

和变形菌门.增温对碳降解菌群具有显著影响,而互 花米草入侵及其交互作用的影响不显著(表4).其 中,种植芦苇土壤的微生物群落中碳降解菌群更易 受到温度的影响,具体表现为增温显著降低其细菌、 真菌和古菌的基因丰度(P<0.05),而种植互花米草 土壤的微生物群落碳降解菌群在温度升高后的变化 不显著(P>0.05),相较于种植芦苇处理更为稳定 (图 2c).

碳降解过程更易受到温度变化的影响(表5).增 温显著影响淀粉、果胶、半纤维素、纤维素、几丁质和 木质素等天然碳化合物的降解过程及其有关的基因 (P<0.05),而互花米草入侵及其交互作用对这些天 然碳化合物分解的影响效果不显著(P>0.05).如图 4 所示,增温处理下的淀粉、果胶、半纤维素、纤维 素、几丁质及木质素降解基因信号强度均低于对照 处理.在增温处理下,碳降解基因信号强度表现为 P4 处理<P2S2处理<S4处理的趋势,而在未增温对照 处理下,则表现为 P2S2 处理<P4 处理<S4 处理的趋 势.增温显著降低了种植芦苇土壤的微生物群落中关 键的碳降解功能基因,主要包括与淀粉降解有关的 cda 基因、与果胶降解有关的 exopolygalacturonase_ fungi 和 rgh 基因、与半纤维素降解有关的 xyla 和 xylanase 基因,以及与纤维素降解有关的 cellobiase 和 endoglucanase 基因(P<0.01).在芦苇与互花米草混种处 理中,增温对碳降解相关功能基因丰度的影响不显 著,而在互花米草处理中,cda、rgh 和 axe 基因比其他 碳降解基因更易受到温度变化的影响(P<0.05).

邓玲玲,等.增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响.

DENG Lingling, et al. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland.

注:试验处理参见表 1;差异性检验采用独立样本 T 检验, *表示增温处理下差异显著(P<0.05).

图 2 碳循环中微生物群落功能基因标准化相对信号强度 Fig. 2 The normalized average signal intensities of microbial community functional genes in carbon cycle

图 3 碳循环代谢过程功能基因标准化相对信号强度 Fig. 3 The normalized average signal intensities of functional genes in carbon cycle metabolism

2.3 增温和互花米草入侵对土壤碳固定关键功能 基因的影响

微生物碳固定途径主要包括卡尔文循环(Calvin

cycle)、还原三羧酸循环(Reductive tricarboxylic acid cycle)、还原乙酰辅酶A途径(Reductive acetyl-CoA pathway)、3-羟基丙酸双循环(3-hydroxypropionate bicycle)、3-羟基丙酸/4-羟基丁酸循环(3-hydroxypropionate/4-hydroxybutylate cycle)、二羧酸/4-羟基丁酸 循环(Dicarboxylate/4-hydroxybutyrate cycle)和细菌 微区室(Bacterial Microcompartments).检测出的碳固 定菌群主要包括细菌和古菌两大类,以细菌群落为 主(图 2b),其中变形菌门的丰度最高(~71%).通过 卡尔文循环、还原乙酰辅酶 A 途径、还原三羧酸循环 和细菌微区室固定 CO₂ 的基因大多存在于变形菌 门,而检测到 3-羟基丙酸双循环和二羧酸/4-羟基丁 酸循环的基因则分别来源于古菌中的绿弯菌门 (Chloroflexi)和泉古菌门(Crenarchaeota).通过双因 素方差分析发现增温显著影响碳固定途径的细菌和 古菌群落(P<0.05,表4),具体表现为增温降低其基 因丰度,尤其是在种植芦苇土壤的微生物群落中变 化最为显著(P<0.05,图 2b),而在互花米草入侵及 其交互作用下的变化不显著(P>0.05,表4).

增温显著影响了芦苇群落中土壤微生物碳固定

66

途径,而在互花米草入侵及其交互作用下的影响不显著(表5).在种植芦苇土壤的微生物群落中,增温显著降低了微生物固碳途径的功能基因信号强度(图5),主要包括卡尔文循环、还原三羧酸循环、还原乙酰辅酶A途径、3-羟基丙酸双循环、二羧酸/4-羟基丁酸循环和细菌微区室等(P<0.05),尤其是二羧酸/4-羟基丁酸循环、与卡尔文循环相关的 rubisco基因信号强度等更为显著(P<0.01).在芦苇与互花米草混种处理中,增温显著降低了3-羟基丙酸双循环的基因信号强度(P<0.01),也显著降低了还原乙酰辅酶A途径中的CODH基因信号强度(P<0.05). 在种植互花米草土壤的微生物群落中,3-羟基丙酸双循环和3-羟基丙酸/4-羟基丁酸循环更易受到温度的影响.

2.4 增温和互花米草入侵对土壤甲烷代谢关键功 能基因的影响

甲烷代谢包括甲烷生成(Methanogenesis)和甲 烷氧化(Methane oxidation)两类,检测出的甲烷代谢 菌群主要包括细菌和古菌两大类,其中以广古菌门 (Euryarchaeota)和变形菌门为主.参与到甲烷生成的 mcrA 基因均来源于广古菌门,而参与甲烷氧化的 pmoA 和 mmoX 基因均来源于细菌.如表 4 和表 5 所 示,甲烷代谢的微生物菌群、甲烷生成与氧化以及关键功能基因均会受到温度的显著影响(P<0.05),但 互花米草入侵及其相互作用的影响较小(P>0.05). 增温显著降低了种植芦苇土壤的细菌和古菌基因丰度(P<0.05,图 2d).土壤中参与甲烷生成的基因丰度大于甲烷氧化(图 6).增温后 mmoX、pmoA 和 mcrA 基因信号强度均下降,尤其是增温显著降低了种植 芦苇土壤的甲烷生成与氧化的基因丰度(P<0.05).

2.5 土壤碳循环微生物功能基因与环境因素的相 关性分析

斯皮尔曼相关性分析结果表明,土壤微生物碳 循环与活性氮气体排放、土壤 pH 高度相关(图 7). 土壤碳循环的微生物菌群(古菌、细菌和真菌)均与 土壤 HONO、NO 和 NO_x 的排放呈显著负相关,其中 HONO 气体排放与 CODH、accD、RgaE、endochitinase 和 phenol_oxidase 等基因的丰度高度相关(P < 0.001),NO 气体排放则与 mmoX、CODH、accD、pme、 RgaE、endochitinase 和 phenol_oxidase 等基因的丰度 高度相关(P < 0.001).土壤 pH 则与古菌和真菌的基 因丰度显著负相关(P < 0.05),主要包括甲烷生成、 果胶和几丁质降解、还原乙酰辅酶 A 途径、二羧酸/ 4-羟基丁酸循环等碳循环代谢过程.

表 5 增温和植物入侵对碳循环关键功能基因信号强度的主要影响及其交互作用

 Table 5
 The main and interactive effects of experimental warming and plant invasion on signal intensities of key functional genes in carbon cycle

碳循环过程	光礴功能其田信早强 奋。	增温		植物	1入侵	增温×植物入侵	
	大键切能举凶信亏浊度 —	F	<i>P</i> 值	F	<i>P</i> 值	F	<i>P</i> 值
	淀粉	12.89	0. 003	0.67	0. 426	0. 91	0.357
	amyA	13.01	0. 003	0.74	0.405	0.84	0.374
	cda	10.34	0. 006	0. 28	0.603	1.41	0. 255
	glucoamylase	13.98	0.002	0.41	0. 533	0.87	0.366
	pula	12.36	0. 003	0.45	0.514	1.34	0. 267
	果胶	12.72	0. 003	0. 79	0. 389	0.43	0. 523
	$exopolygalacturonase_fungi$	8.16	0. 013	2.37	0. 146	0.17	0. 684
碳降解	pec_Cdeg	10.03	0.007	2.26	0. 155	0.50	0. 491
	$pectinase (pectate_lyase)$	8.27	0. 012	0.58	0.461	0.09	0. 773
	pme	12.83	0. 003	0.71	0.415	0.70	0. 417
	RgaE	16.12	0. 001	4.26	0.058	0. 25	0. 624
	rgh	20. 21	0. 001	0.05	0. 831	2. 23	0. 158
	rgl	7.81	0.014	0.11	0. 751	0.41	0. 533
	半纤维素	12.97	0. 003	0.89	0.361	1.60	0. 226
	ara	13.54	0. 002	0.69	0. 421	1.85	0. 195
	mannanase	10. 85	0.005	0.14	0.711	1.50	0. 241
	xyla	12.51	0.003	1.00	0.334	2.02	0.178

DENG Lingling, et al. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland.

礎循环过程	关键功能基因信号强度 —	垟	曾温	植物	植物入侵		增温×植物入侵	
欧阳和过生		F	<i>P</i> 值	F	<i>P</i> 值	F	<i>P</i> 值	
	xylanase	12.31	0. 003	1.61	0. 226	1.03	0. 326	
	纤维素	11.08	0.005	0. 94	0.350	2.32	0.150	
	axe	8.64	0. 011	0.08	0. 781	1.12	0.309	
	cellobiase	11.95	0.004	0.95	0.346	3.18	0.096	
	endoglu can a se	7.78	0. 015	0. 79	0. 391	2.96	0.108	
	exoglucanase	11.31	0. 005	1. 59	0. 227	0.50	0. 490	
	几丁质	14.11	0. 002	0.66	0.432	1.24	0. 285	
	acetylglucos aminidas e	13.92	0. 002	0.71	0.415	1.29	0. 275	
	chitinase	12.30	0. 003	0. 90	0.360	1.05	0. 323	
	endochitinase	18.38	0. 001	0. 49	0. 496	1.16	0.300	
	木质素	17.19	0. 001	0.90	0.359	0.70	0.416	
	glx	8.66	0. 011	0.00	0.962	1.13	0.305	
	mnp	8.99	0. 010	1.69	0.215	0.13	0. 724	
	phenol_oxidase	19.05	0. 001	1.24	0. 284	0.63	0. 440	
	卡尔文循环	13.92	0. 002	0. 48	0.502	1.54	0. 236	
	$FBP_aldolase$	13.07	0. 003	0.04	0. 839	0. 99	0.338	
	FBPase	14.08	0. 002	0.31	0. 589	0.52	0. 484	
	rubisco	12.84	0. 003	0.58	0.461	2.65	0. 126	
	GAPDH_Calvin	17.26	0. 001	1.63	0. 222	0. 93	0.352	
	pgk	14.61	0. 002	1.34	0.266	0.88	0.364	
	PRI	11.82	0.004	0.02	0. 896	1.01	0.332	
	TIM	11.63	0.004	0.17	0. 691	0.34	0. 571	
	tktA	12.42	0. 003	0.33	0. 574	3.80	0.071	
	还原三羧酸循环	9.90	0.007	1.36	0.264	0.96	0.343	
	aclB	2.22	0. 158	2.81	0.116	0.13	0. 726	
碳固定	Acna	6.64	0. 022	1.26	0. 281	0.22	0. 646	
	frdA_rTCA	12.61	0. 003	1.19	0. 293	0.17	0. 688	
	mdh	10.37	0. 006	1.78	0. 203	1.14	0.304	
	还原乙酰辅酶 A 途径	14.56	0.002	1.10	0.312	0.41	0. 535	
	CODH	18.29	0.001	2.29	0. 153	0.07	0. 791	
	FTHFS	13.80	0. 002	0. 94	0.350	0.48	0. 500	
	3-羟基丙酸双循环	47.87	0. 000	3.07	0.102	0.09	0.773	
	accD	84. 99	0. 000	2.46	0. 139	0. 61	0. 449	
	3-羟基丙酸/4-羟基丁酸循环	16.52	0. 001	1.92	0. 187	0.01	0. 910	
	二羧酸/4-羟基丁酸循环	12.94	0. 003	0.41	0. 533	0. 89	0.361	
	细菌微区室	10.40	0.006	1.14	0.303	0.40	0. 540	
	CsoS1_CcmK	8.94	0. 010	0. 81	0.382	0.16	0. 694	
	甲烷生成	16.86	0. 001	2.00	0.179	0. 69	0. 421	
	mcrA	16.86	0. 001	2.00	0. 179	0. 69	0. 421	
甲烷代谢	甲烷氧化	13.02	0. 003	0. 68	0. 424	0. 77	0. 395	
	mmoX	9.22	0. 009	0.44	0.519	1.00	0.335	
	pmoA	12.13	0.004	0.65	0. 433	0.56	0.469	

续表5

注:差异性检验采用双因素方差分析,F表示检验统计量,P值中加粗斜体值表示差异显著(P<0.05).

南京信息工程大学学报(自然科学版),2022,14(1):62-76

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1):62-76

注:差异性检验采用独立样本 T 检验, *表示增温处理下差异显著(*P<0.05; **P<0.01; ***P<0.001).

图 4 碳降解过程功能基因标准化相对信号强度

Fig. 4 The normalized average signal intensities of functional genes in carbon degradation process

DENG Lingling, et al. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland.

注:差异性检验采用独立样本 T 检验, * 表示增温处理下差异显著(*P<0.05; **P<0.01; ***P<0.001).

图 5 碳固定过程功能基因标准化相对信号强度

Fig. 5 The normalized average signal intensities of functional genes in carbon fixation process

南京信息工程大学学报(自然科学版),2022,14(1):62-76

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1):62-76

Fig. 6 The normalized average signal intensities of functional genes in methane metabolism process

3 讨论

碳是构成生命有机体的基本元素,碳的生物地 球化学循环是生态系统中重要的物质循环,其微生 物驱动机制和关键功能基因的作用是当前研究的热 点[31].在本研究中,检测到的土壤碳循环功能基因数 量及丰度均高于其他各类别的基因,表明崇明东滩 湿地土壤中微生物碳代谢潜力巨大.同时发现,在相 同温度处理下,种植互花米草的土壤碳循环代谢的 基因信号强度均高于芦苇处理,表明种植互花米草 相较于芦苇具有更强的土壤碳代谢潜力.研究表明, 互花米草相较于其他植被类型,如碱蓬(Suaeda salsa)、芦苇和海三棱藨草(Scirpus mariqueter)等,土壤 具有更高的碳含量与碳储量,其入侵后能够增加土 壤碳汇强度与固碳能力^[12,15,32-34]. 与柽柳(Tamarix chinensis)、碱蓬和芦苇等当地植物相比,互花米草入 侵提高了土壤 CO2、CH4 和 N2O 等温室气体的排放 通量[13,35-36].在本研究中,互花米草入侵对碳循环代 谢过程的影响效果并不显著,可能是受限于入侵时 间较短(~2年).植物入侵造成的影响不会一直保持 不变,其影响可能会随着入侵时间而增加[37-38].

气候变暖可能会破坏湿地生态系统原有的生物 地球化学平衡,从而影响湿地土壤生态系统功能^[39]. 在本研究中,增温显著影响了土壤碳循环代谢过程, 其中大多数功能基因信号强度在增温后降低,表明

由微生物驱动的碳循环代谢过程具有较高的温度敏 感性,且增温对湿地土壤的微生物碳代谢潜力具有 负反馈效应.Feng 等^[40]发现,长达 12 年的增温试验 显著增加了土壤中氧化难降解碳和复杂结构碳的微 生物功能基因丰度.虽然短期增温会刺激微生物对 土壤有机质的水解,但长期增温增强了氧化型碳降 解酶的活性,却不影响水解型碳降解酶的活性,促进 土壤有机质分解酶的功能从水解型转向为氧化型, 加速微生物群落重组,最终导致难降解碳的氧化和 CO, 排放量增加,造成土壤碳的损失^[41-43].酶活性对 增温持续时间的响应是处于变化中的,且稳定的土 壤有机质分解在短期增温下较难被估计[41-43].在本 研究中,相对于难降解的碳化合物(如木质素),淀粉 这类易降解碳化合物的碳降解功能基因丰度更高, 但增温对这类基因的影响更大.因此,本研究在短期 增温(~2年)下的碳降解过程以降解淀粉为主,但 有向难降解碳过程转化的趋势.同时,增温所带来的 环境条件变化会使得土壤有机质分解具有不确定 性,如增温减少了土壤水分,从而减少土壤有机质的 分解,可能会抵消微生物的分解作用^[40,4445].

互花米草和芦苇对温度的响应存在一定的差 异^[46].互花米草作为快速扩张的外来入侵物种,对气 候与环境具有极强适应性和耐受力^[15,47].因此,种植 互花米草土壤的微生物群落对增温的响应不如芦苇
 邓玲玲,等.增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响.

 72
 DENG Lingling, et al. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland.

注:*表示差异显著(P<0.05).

Fig. 7 Correlation matrix based on Spearman's correlation analysis between environmental factors and soil microbial carbon cycle

明显,其土壤碳循环代谢能力更为稳定.本研究也发现,未增温处理下两者混种的土壤碳循环代谢基因 信号强度低于芦苇或互花米草单种处理,而在增温 条件下,两者混种的土壤碳循环代谢基因信号强度 高于芦苇单种处理,但低于互花米草单种处理.因 此,种植芦苇土壤的微生物群落相较于互花米草处 理更易受到温度变化的影响.本研究中增温对互花 米草与芦苇混种土壤的微生物群落影响效果并不显 著,其原因可能是增温加剧了种间竞争,而互花米草 相对于芦苇表现出更强的竞争优势.因此,增温使得 微生物群落向更为稳定的互花米草单种处理发展, 从而在一定程度上抵消温度升高带来的负效应.

湿地生态系统土壤微生物群落组成受到土壤孔 隙度、温度、水分、pH 和盐分等诸多理化性质的影 响^[10,48-50].其中,土壤 pH 是影响微生物群落与结构 的主要因素之一^[51].湿地土壤 pH 变化较小且呈碱 性,其中真菌和细菌生存的最佳 pH 区间分别为 4.0~6.0和6.5~7.5.因此,湿地土壤微生物中细菌 数量更多^[10,52].在本研究中,湿地土壤的 pH 值均在 8以上,且检测到的微生物碳循环代谢菌群也是以 细菌为主.土壤微生物碳循环代谢过程与土壤活性 氮气体排放及土壤 pH 显著负相关.我们在之前的研 究中发现,温度升高增加了土壤 pH 以及 HONO 和 NO 等活性氮气体的排放^[26].因此,增温可能通过改 变土壤 pH,影响土壤的微生物群落组成与结构,从 而影响由微生物驱动的土壤碳氮循环过程.

湿地是大气 CH₄ 的最大天然来源,其中滨海湿 地 CH₄ 的排放量可占全球排放总量的 20%~39%, 其每年排放量约为 100~231 Tg ^[53-55].滨海湿地 CH 的排放主要包括 CH₄ 的产生、氧化和传输三个基本 过程.土壤 CH₄ 氧化和产生过程是同时进行的^[55], 主要由产甲烷菌和甲烷氧化菌共同控制,并且受到 温度、湿度等环境因子的调控^[56-58].本研究中,参与 甲烷生成的基因丰度均高于甲烷氧化,表明滨海湿 地存在较高的 CH₄ 产生潜力及排放速率,与其他研 究结果一致^[59].温度升高可增强土壤微生物活性,从 而促进 CH4 的排放速率与排放通量^[60-62].本研究发 现,增温降低了土壤甲烷生成与氧化的基因丰度,但 甲烷生成的基因丰度仍高于甲烷氧化的基因丰度. 一般来说,产甲烷菌适宜的 pH 范围在 6~8,而甲烷 氧化菌的最适 pH 范围为 5.5~6.5^[63-64].本研究中, 土壤 pH 值均高于 8,且增温升高了土壤 pH,超出产 甲烷菌和甲烷氧化菌的最适 pH 范围,导致 pH 升高 所带来消极影响超过增温带来的积极影响,这可能 是温度升高却降低了甲烷生成与氧化基因丰度的原 因之一.因此,增温可能导致湿地土壤依然具有较高 的 CH4 生产潜力, 但减缓了 CH4 的排放速率.

4 结论

通过2年的增温和互花米草试验,我们发现增 温显著降低了湿地土壤微生物碳循环代谢基因,但 互花米草入侵的影响并不显著.在相同温度处理下, 互花米草相较于芦苇具有更强的碳代谢潜力,并且 种植互花米草土壤的微生物群落对增温的响应不如 芦苇显著,其碳循环代谢能力更为稳定.增温使得两 者混种土壤的微生物群落向更为稳定的互花米草单 种土壤发展,从而在一定程度上抵消温度升高带来 的负效应.相对于难降解的碳化合物(如木质素),增 温对淀粉类易降解碳化合物的碳降解功能基因丰度 的影响更大.短期增温(~2年)下的碳降解过程以降 解淀粉为主,但有向难降解碳过程转化的趋势.增温 降低了土壤甲烷生成与氧化的基因丰度,但甲烷生 成的基因丰度仍高于甲烷氧化的基因丰度.因此,增 温可能导致湿地土壤依然具有较高的 CH₄ 生产潜 力,但减缓了 CH, 的排放速率.增温可通过改变土壤 pH 来影响微生物群落,从而改变由微生物驱动的土 壤碳氮循环过程.本研究有助于理解增温及互花米 草入侵对滨海湿地土壤碳循环及温室气体排放的影 响,可为土壤温室气体排放、全球变暖、碳中和以及 湿地生态系统的保护和管理等提供一定的科学依据 和支撑,对定量湿地土壤微生物碳代谢潜力及其在 全球变化下的响应具有重要意义.

参考文献

References

- [1] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature, 2006, 440(7081):165-173
- [2] 王法明,唐剑武,叶思源,等.中国滨海湿地的蓝色碳 汇功能及碳中和对策[J].中国科学院院刊,2021,36 (3):241-251
 WANG Faming, TANG Jianwu, YE Siyuan, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J].Bulletin of Chinese Academy of Sciences,2021,36(3):241-251
- [3] Martínez-Espinosa C, Sauvage S, Al Bitar A, et al. Denitrification in wetlands: a review towards a quantification at global scale [J]. Science of the Total Environment, 2021,754:142398
- McLeod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂[J]. Frontiers in Ecology and the Environment, 2011,9(10): 552-560
- [5] Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320(5882):1444-1449
- [6] 刘亚男,郗敏,张希丽,等.中国湿地碳储量分布特征 及其影响因素[J].应用生态学报,2019,30(7): 2481-2489
 LIU Yanan, XI Min, ZHANG Xili, et al. Carbon storage distribution characteristics of wetlands in China and its influencing factors[J]. Chinese Journal of Applied Ecology,2019,30(7):2481-2489
- [7] Davis J L, Currin C A, O'Brien C, et al.Living shorelines: coastal resilience with a blue carbon benefit [J]. PLoS One, 2015, 10(11):e0142595
- [8] Grandy A S, Neff J C.Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function [J].Science of the Total Environment, 2008, 404(2/3):297-307
- [9] Webb E L, Friess D A, Krauss K W, et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise[J].Nature Climate Change, 2013, 3 (5):458-465
- [10] 解雪峰,项琦,吴涛,等.滨海湿地生态系统土壤微生物及其影响因素研究综述[J].生态学报,2021,41 (1):1-12

DENG Lingling, et al. Effects of experimental warming and Spartina alterniflora invasion on soil carbon cycle functional genes in Chongming Dongtan wetland.

prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem[J].Acta Ecologica Sinica,2021,41(1):1-12

- [11] Mao D H, Liu M Y, Wang Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention [J]. Sensors, 2019, 19(10):2308
- [12] Liao C Z, Luo Y Q, Jiang L F, et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China [J]. Ecosystems, 2007, 10(8):1351-1361
- [13] Sheng Q, Zhao B, Huang M Y, et al. Greenhouse gas emissions following an invasive plant eradication program [J]. Ecological Engineering, 2014, 73:229-237
- [14] 范成新,刘敏,王圣瑞,等.近 20 年来我国沉积物环境 与污染控制研究进展与展望[J].地球科学进展, 2021,36(4):346-374

FAN Chengxin, LIU Min, WANG Shengrui, et al. Research progress and prospect of sediment environment and pollution control in China in recent 20 years[J].Advances in Earth Science, 2021, 36(4):346-374

 [15] 解雪峰,孙晓敏,吴涛,等.互花米草入侵对滨海湿地 生态系统的影响研究进展[J].应用生态学报,2020, 31(6):2119-2128

XIE Xuefeng, SUN Xiaomin, WU Tao, et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem:advances and prospects[J]. Chinese Journal of Applied Ecology, 2020, 31(6):2119-2128

- [16] Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590
- [17] Huber J A, Welch D B M, Morrison H G, et al. Microbial population structures in the deep marine biosphere [J]. Science, 2007, 318(5847):97-100
- [18] 刘洋荧,王尚,厉舒祯,等.基于功能基因的微生物碳 循环分子生态学研究进展[J].微生物学通报,2017, 44(7):1676-1689
 LIU Yangying, WANG Shang, LI Shuzhen, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44 (7);
- [19] Wang C, Morrissey E M, Mau R L, et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization [J]. The ISME Journal, 2021, 15 (9):2738-2747

1676-1689

- [20] 周虹霞,刘金娥,钦佩.外来种互花米草对盐沼土壤微 生物多样性的影响:以江苏滨海为例[J].生态学报, 2005(9):2304-2311
 ZHOU Hongxia, LIU Jin'e, QIN Pei. Effects of an alien species (*Spartina alterniflora*) on soil microorganism diversity in salt marshes, Jiangsu coastal inter-tidal ecosystem[J].Acta Ecologica Sinica, 2005(9):2304-2311
- [21] Chabbi A, Rumpel C, Grootes P M, et al. Lignite degradation and mineralization in lignite-containing mine sediment as revealed by ¹⁴C activity measurements and molecular analysis [J]. Organic Geochemistry, 2006, 37 (8):957-976
- [22] Wang Z J, Lu G X, Yuan M T, et al. Elevated temperature

overrides the effects of N amendment in Tibetan grassland on soil microbiome [J]. Soil Biology and Biochemistry, 2019,136:107532

- [23] Xue K, Wu L Y, Deng Y, et al. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands [J]. Applied and Environmental Microbiology, 2013, 79(4):1284-1292
- [24] Ding J J, Zhang Y G, Deng Y, et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline[J].Scientific Reports, 2015, 5:7994
- [25] Zhou J Z, Xue K, Xie J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming [J]. Nature Climate Change, 2012, 2(2):106-110
- [26] Song S S, Zhang C, Gao Y, et al. Responses of wetland soil bacterial community and edaphic factors to two-year experimental warming and *Spartina alterniflora* invasion in Chongming Island[J]. Journal of Cleaner Production, 2020,250:119502
- [27] Guo X P, Yang Y, Niu Z S, et al. Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze estuary and its coastal area, China[J]. Science of the Total Environment, 2019, 648: 306-314
- [28] Wu D M, Deng L L, Liu Y Z, et al. Comparisons of the effects of different drying methods on soil nitrogen fractions: insights into emissions of reactive nitrogen gases (HONO and NO)[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3):224-231
- [29] Shi Z, Yin H Q, van Nostrand J D, et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities [J].mSystems, 2019, 4(4).DOI:10.1128/msystems.00296-19
- [30] Feng J J, Wang C, Lei J S, et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J].Microbiome,2020, 8(1):3
- [31] Rui J P, Li J B, Wang S P, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau [J]. Applied and Environmental Microbiology, 2015, 81 (17): 6070-6077
- [32] Yang W, An S Q, Zhao H, et al. Labile and recalcitrant soil carbon and nitrogen pools in tidal salt marshes of the eastern Chinese coast as affected by short-term C4 plant *Spartina alterniflora* invasion [J]. CLEAN-Soil, Air, Water, 2015, 43(6):872-880
- [33] Zhang G L, Bai J H, Jia J, et al. Soil organic carbon contents and stocks in coastal salt marshes with *Spartina alterniflora* following an invasion chronosequence in the Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3):374-385
- [34] Huang L D, Zhang Y H, Shi Y M, et al. Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China [J]. Estuarine, Coastal and Shelf Science, 2015, 157:93-98
- [35] Song H L, Liu X T. Anthropogenic effects on fluxes of

74

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1):62-76

ecosystem respiration and methane in the Yellow River estuary, China[J]. Wetlands, 2016, 36(1):113-123

- Yuan J J, Ding W X, Liu D Y, et al. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH₄ and N₂O and carbon sequestration in a coastal salt marsh in China [J]. Global Change Biology, 2015, 21 (4):1567-1580
- [37] Zhang G L, Bai J H, Zhao Q Q, et al. Bacterial succession in salt marsh soils along a short-term invasion chronosequence of *Spartina alterniflora* in the Yellow River estuary, China [J]. Microbial Ecology, 2020, 79(3):644-661
- [38] Dostál P, Müllerová J, Pyšek P, et al. The impact of an invasive plant changes over time [J]. Ecology Letters, 2013, 16(10): 1277-1284
- [39] Vizza C, West W E, Jones S E, et al. Regulators of coastal wetland methane production and responses to simulated global change[J].Biogeosciences, 2017, 14(2):431-446
- [40] Feng W T, Liang J Y, Hale L E, et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming [J]. Global Change Biology, 2017, 23 (11):4765-4776
- [41] Chen J, Sinsabaugh R L. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics [J]. Global Change Biology, 2021, 27(7):1322-1325
- [42] Chen J, Elsgaard L, van Groenigen K J, et al. Soil carbon loss with warming: new evidence from carbon-degrading enzymes [J]. Global Change Biology, 2020, 26 (4): 1944-1952
- [43] Chen J, Luo Y Q, García-Palacios P, et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration [J]. Global Change Biology, 2018, 24(10):4816-4826
- [44] Li D J, Schädel C, Haddix M L, et al. Differential responses of soil organic carbon fractions to warming: results from an analysis with data assimilation [J].Soil Biology and Biochemistry, 2013, 67:24-30
- [45] Zhou X H, Luo Y Q, Gao C, et al. Concurrent and lagged impacts of an anomalously warm year on autotrophic and heterotrophic components of soil respiration: a deconvolution analysis [J]. New Phytologist, 2010, 187 (1): 184-198
- [46] 祁秋艳,杨淑慧,仲启铖,等.崇明东滩芦苇光合特征 对模拟增温的响应[J].华东师范大学学报(自然科学 版),2012(6):29-38

QI Qiuyan, YANG Shuhui, ZHONG Qicheng, et al. Responses of photosynthetic characteristics of *Phragmites australis* to simulated temperature enhancement in eastern Chongming Island, China [J]. Journal of East China Normal University (Natural Science), 2012(6):29-38

- [47] 谢宝华,韩广轩.外来入侵种互花米草防治研究进展
 [J].应用生态学报,2018,29(10):3464-3476
 XIE Baohua, HAN Guangxuan. Control of invasive Spartina alterniflora: a review[J].Chinese Journal of Applied Ecology,2018,29(10):3464-3476
- [48] Tang Y S, Wang L, Jia J W, et al. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial

respiration and carbon turnover[J].Soil Biology and Biochemistry, 2011, 43(3):638-646

- [49] Zhang H X, Zheng S L, Ding J W, et al. Spatial variation in bacterial community in natural wetland-river-sea ecosystems[J].Journal of Basic Microbiology, 2017, 57(6): 536-546
- [50] Cheung M K, Wong C K, Chu K H, et al. Community structure, dynamics and interactions of bacteria, archaea and fungi in subtropical coastal wetland sediments [J]. Scientific Reports, 2018, 8:14397
- [51] Tripathi B M, Stegen J C, Kim M, et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria [J]. The ISME Journal, 2018, 12 (4):1072-1083
- [52] Cong M Y, Cao D, Sun J K, et al. Soil microbial community structure evolution along halophyte succession in Bohai Bay wetland [J]. Journal of Chemistry, 2014, 2014:491347
- [53] Kim S Y, Veraart A J, Meima-Franke M, et al. Combined effects of carbon, nitrogen and phosphorus on CH₄ production and denitrification in wetland sediments[J].Geoderma, 2015, 259/260:354-361
- [54] 许鑫王豪,赵一飞,邹欣庆,等.中国滨海湿地 CH₄ 通量研究进展[J]. 自然资源学报, 2015, 30(9): 1594-1605
 XU Xinwanghao, ZHAO Yifei, ZOU Xinqing, et al. Advances in the research on methane emissions of coastal

saline wetlands in China [J]. Journal of Natural Resources, 2015, 30(9):1594-1605

- [55] 宫健,崔育倩,谢文霞,等.滨海湿地 CH₄ 排放的研究 进展[J].资源科学,2018,40(1):173-184
 GONG Jian,CUI Yuqian,XIE Wenxia, et al.Advances in research on methane emissions of coastal wetlands[J]. Resources Science,2018,40(1):173-184
- [56] 韩雪,陈宝明.增温对土壤 N₂O 和 CH₄ 排放的影响与 微生物机制研究进展[J].应用生态学报,2020,31 (11):3906-3914
 HAN Xue, CHEN Baoming.Progress in the effects of warming on soil N₂O and CH₄ emission and the underlying microbial mechanisms [J]. Chinese Journal of Applied Ecology,2020,31(11):3906-3914
- [57] Jiao Z H, Hou A X, Shi Y, et al. Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community
 [J]. Communications in Soil Science and Plant Analysis, 2006, 37(13/14):1889-1903
- [58] Yue J, Shi Y, Liang W, et al. Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China [J]. Nutrient Cycling in Agroecosystems, 2005, 73 (2/3):293-301
- [59] Tong C, Wang W Q, Huang J F, et al. Invasive alien plants increase CH₄ emissions from a subtropical tidal estuarine wetland [J]. Biogeochemistry, 2012, 111 (1/2/ 3):677-693
- [60] Gaihre Y K, Wassmann R, Villegas-Pangga G. Impact of elevated temperatures on greenhouse gas emissions in rice systems: interaction with straw incorporation studied in a growth chamber experiment [J]. Plant and Soil,

2013,373(1/2):857-875

- [61] Cheng W G, Sakai H, Hartley A, et al. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil[J].Global Change Biology, 2008, 14(3): 644-656
- [62] Laine A M, Mehtätalo L, Tolvanen A, et al. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes [J]. Science of the Total Environment, 2019, 647:169-181

[63] 仝川,闫宗平,王维奇,等.闽江河口感潮湿地入侵种

互花米草甲烷通量及影响因子[J].地理科学,2008, 28(6).826-832

TONG Chuan, YAN Zongping, WANG Weiqi, et al. Methane flux from invasive species (*Spartina alterniflora*) and influencing factors in the Min river estuary [J]. Scientia Geographica Sinica, 2008, 28 (6): 826-832

[64] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review [J]. European Journal of Soil Biology, 2001, 37(1):25-50

Effects of experimental warming and *Spartina alterniflora* invasion on soil carbon cycle functional genes in Chongming Dongtan wetland

DENG Lingling^{1,2} WANG Ruhai³ WU Dianming^{1,2}

1 School of Geographic Sciences/Key Laboratory of Geographic Information Science (Ministry of Education),

East China Normal University, Shanghai 200241

2 Institute of Eco-Chongming, East China Normal University, Shanghai 202162

3 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008

Abstract The carbon cycling process in wetland ecosystems has an important impact on global climate change. In this study, we used the GeoChip technology to detect the key functional genes of soil carbon cycle in the wetland soil of Chongming Dongtan, China. We also studied the effects of experimental warming and Spartina alterniflora invasion on carbon cycle of wetland soil and their relationships with environmental factors. The results showed that:1) the number and abundance of functional genes in soil carbon cycle were higher than those in other categories;2) the signal intensity of functional soil carbon cycle genes was higher in S. alterniflora community than in Phragmites australis community with the same temperature treatment; 3) warming significantly reduced the signal intensity of most functional genes in soil carbon cycle, including the basic processes of carbon degradation, carbon fixation, and methane metabolism, but the influence was not significant for the S. alterniflora invasion and its interaction with warming (P>0.05); 4) compared with the control, warming significantly reduced the abundance of functional genes of carbon cycle in the P. australis community, mainly including cda, exopolygalacturonase_fungi, rgh, xyla, xylanase, cellobiase and endoglucanase genes in the carbon degradation process and rubisco genes related to Calvin cycle during carbon fixation (P < 0.01), but the changes were not significant in the S. alterniflora community and their mixed community (P>0.05); 5) soil microbial carbon cycle functional genes were significantly and negatively correlated with soil reactive nitrogen gas emission and soil pH (P < 0.05). In conclusion, warming significantly changes the functional gene abundances of soil carbon cycle. The research results provide data support for quantifying the impact of global warming on wetland carbon cycle and greenhouse gas emissions, and realizing carbon neutralization, and also provide scientific basis for the protection and management of wetland ecosystem.

Key words carbon cycle; plant invasion; GeoChip; global warming; carbon neutrality

76