DOI:10.13878/j.cnki.jnuist.2021.05.016

曹永娟^{1,2} 冯亮亮¹

基于响应面法的轴向磁场永磁记忆 电机多目标优化设计

摘要

针对新型轴向磁场永磁记忆电机的 结构优化问题,采用响应面法对电机进 行优化设计.通过电磁性能方程和正交 实验,初步分析了电机关键参数的影响. 为了有效地设计该电机,初步选取了软 磁占比、转子极数、气隙长度三个影响因 素作为正交试验的设计因子,再采用响 应面优化方法,将所选的感应电动势、感 应电动势的总谐波畸变率和齿槽转矩三 个性能作为优化目标.使用有限元软件 Ansoft Maxwell 和响应面设计软件 Design Expert 建立响应面实验,得到电机的不 同影响因素组合模型下的仿真参数和拟 合曲线.本文结合不同的优化方法,以满 足具体的设计要求,理论分析和实验结 果都验证了所提出的电机和优化方法的 可行性和有效性.通过对试验数据分析 对比,得出了优化方案,结果表明:优化 设计之后的电机在缩减了永磁材料成本 的情况下,还保证了比原电机更优的感 应电动势、更小的感应电动势总谐波畸 变率和齿槽转矩.

关键词

记忆电机;响应面法;多目标优化; 有限元分析

中图分类号 TM351 文献标志码 A

收稿日期 2020-09-14 资助项目 国家自然科学基金(51507082) 作者简介

曹永娟,女,博士,副教授,研究方向为新 型电机设计与分析.yjcao@nuist.edu.cn

- 1 南京信息工程大学 自动化学院,南京,210044
- 2 南京信息工程大学 大气环境与装备技术 协同创新中心,南京,210044

0 引言

在集成系统中,一个重要的要求是为特定的应用选择最合适的 电机.传统上,径向电机产量更多,但是由于永磁材料的发展,对于某 些特殊的应用场合,使用径向磁通电机似乎不再是最合适的解决方 案,轴向磁通电机可能是一个有竞争力的选择^[1].轴向磁通电机的结 构紧凑、漏磁小,非常适用于精准调速的应用场合.但是传统轴向磁通 电机恒功率区较窄,这导致电机电动运行的调速范围受到很大的限 制,而且在发电运行时,电压调节和故障灭磁困难^[2].气隙磁通可调电 机^[3]可分为三类:一是混合励磁电机;二是机械调磁电机;三是记忆 电机.关于电机的优化方法,文献[4]以电机效率和齿槽转矩作为优化 目标,永磁体厚度、定子齿宽、气隙长度、定子槽口宽、极弧系数作为 优化因子,通过对实验数据分析对比,得出了优化方案;文献[5]通过 分析转子的受力,采用有限元仿真计算了其径向磁通密度和切向磁 通密度,并选定正交试验表优化磁极形状,达到了减小齿槽转矩的目 的.齿槽转矩的存在除了会影响电机的高精度控制,还会产生振动和 噪声^[67]. 文献 [8] 采用正交实验设计 (Design of Orthogonal Experiment, DOE)和响应面法(Response Surface Method, RSM)对轴向 磁通永磁电机进行多目标优化,并应用到垂直轴风力发电系统,进一 步推动了家庭用小型风力发电机的发展;文献[9]和文献[10]均采用 了 RSM 进行分析,前者结合分层优化策略,以高转矩密度和低成本为 优化目标,通过多种优化方法得出了可行的优化方案,并制造了样机 进行验证,后者仅采用了中心复合表面设计(Central Composite Face, CCF);文献[11-12]使用了 DOE 进行优化设计,DOE 在影响因子较少 时具有简便性、直观性、科学性等优点,但在影响因子较多时,会大大 增加实验次数.为了优化输出转矩,文献[13]采用中心复合设计(Central Composite Design, CCD)对转矩波动系数、起动转矩值、输出转 矩均值的实验结果建立了多元二次模型;文献[14]和文献[15]以感 应电动势、齿槽转矩、气隙磁通密度、损耗等指标来比较新型电机与 原电机的性能,前者偏向于电机性能的提高,后者偏向于降低电机的 制造成本,但实验次数都较多.以上方法虽然都得出了优化方案,但仅 限于单目标或者双目标,没有考虑三个目标以上的情况.

本文提出的新型轴向磁场永磁记忆电机(Axial-Flux Permanent Magnet Memory Motor, AFPMMM),结 合了混合励磁和记忆电机的特性,采用 Halbach 盘 式阵列的磁极定子结构,将电枢绕组和励磁绕组分 别放置在不同的定子盘上,防止永磁体发生不可逆 退磁,并且励磁绕组中通入的是脉冲电流,能够有效 地降低调磁损耗.针对 AFPMMM 的结构优化问题. 提出了采用结合多指标正交实验的响应面优化方法 对一种新型轴向永磁记忆电机的多个性能进行初步 分析.以该电机的电磁功率的尺寸方程为依据,初步 确定设计因子进行正交试验.根据正交实验结果综 合选择优化因子和优化目标,再采用 Box-Behnken 设计(Box-Behnken Design, BBD)进行响应面实验.最 后利用有限元仿真分析对响应面实验结果进行验 证,对比发现,结合不同的优化方法可以在更少的实 验次数下就能分析多个目标,从而得到更好的优化 结果.

1 AFPMMM 的基本结构

本文设计的 AFPMMM,其基本结构如图 1 所 示,它是典型的双气隙双定子单转子结构.其定子包 括磁极定子和电枢定子,磁极定子盘由径向充磁的 钕铁硼(NdFeB)和软磁材料组合拼接而成,靠近气 隙的一层有若干个轴向充磁的铝镍钴(AlNiCo)材 料,每个 AlNiCo 材料上都缠有调磁绕组;电枢定子 盘由高机械强度的空心圆柱体和定子铁心齿构成, 定子铁心齿上缠绕有电枢绕组.转子由若干转子铁 心齿与具有足够机械强度的非导磁圆环组合而成. 其中磁极定子上的 AlNiCo 材料和 NdFeB 材料共同 构成 Halbach 阵列,从而增大气隙内磁通密度,有利 于减小电机脉动转矩.该电机的特点在于将调磁绕 组和电枢绕组分别设置在不同的定子盘上,简化了 控制电路,降低了控制系统的实现难度.另外,绕组 分离还有利于减少绕组的耦合和互感.

该电机磁场磁路依次为 NdFeB、磁极定子软磁 材料、AlNiCo、气隙、转子铁心齿、电枢定子、气隙、转 子铁心齿、气隙、AlNiCo、磁极定子软磁材料、最后回 到 NdFeB,形成磁场回路,如图 2 所示.

2 电机的电磁性能分析及初始设计

2.1 电磁性能分析

由文献[16]可知,AFPMMM 无负载发电运行的 电磁功率可以表示如下:

图 2 AFPMMM 磁路示意图 Fig. 2 Magnetic circuit diagram of the AFPMMM

$$P_{\rm em} = \eta \, \frac{m}{T} \int_0^T e(t) \, i(t) \, \mathrm{d}t = \eta m K_{\rm pm} E_{\rm pk} I_{\rm pk} \,, \qquad (1)$$

式中, η 为电机效率,m 为电机相数,T 为感应电动势 的一个电周期,e(t) 为周期内相感应电动势的瞬时 值,i(t) 为周期内相感应电流的瞬时值, K_{pm} 为电磁 功率波形系数, E_{pk} 为周期内相感应电势的峰值, I_{pk} 为周期内相感应电流的峰值,t 表示时间.

由感应电动势产生原理可知:

$$e(t) = -\frac{\mathrm{d}\psi_{\mathrm{ph}}}{\mathrm{d}t} = -N_{\mathrm{ph}}\frac{\mathrm{d}\phi_{\mathrm{ph}}}{\mathrm{d}t},\qquad(2)$$

式中, ψ_{ph} 为每相磁链, N_{ph} 为每相线圈串联匝数, ϕ_{ph} 为每相磁通.

每相磁通可表示为

$$\phi_{\rm ph} = K_{\rm br} B_{\rm avg} S_{\rm a} \cos(\omega t) , \qquad (3)$$

$$K_{\rm br} = \frac{B_{\rm t}A_{\rm t}}{B_{\rm t}A_{\rm t}},\tag{4}$$

式中, K_{br} 为转子磁通传递系数, B_{avg} 为电枢侧直轴气 隙磁通密度平均值, S_a 为每相磁通感应的有效面积, ω 为转子角速度, B_i 为定子齿磁通密度, A_i 为定子齿 磁通感应面积, B_r 为转子齿磁通密度, A_r 为转子磁 通感应面积.

感应电动势瞬时值和峰值的表达式可以为

$$e(t) = K_{\rm e} N_{\rm ph} K_{\rm br} B_{\rm avg} S_{\rm a} \omega \sin(\omega t) , \qquad (5)$$

$$E_{\rm pk} = K_{\rm e} N_{\rm ph} K_{\rm br} B_{\rm avg} S_{\rm a} \omega.$$
 (6)

每相磁通的有效面积可以表示为

$$S_{\rm a} = K_{\rm st} \, \frac{\pi (R_{\rm o}^2 - R_{\rm i}^2)}{P_{\rm s}},\tag{7}$$

$$K_{\rm st} = \frac{A_{\rm sta}}{A_{\rm u}} = \frac{(R_{\rm o} + R_{\rm i}) \,\theta_{\rm st} + 2\tau_{\rm coil}}{(R_{\rm o} + R_{\rm i}) \,\theta_{\rm u}}.$$
(8)

转子角速度可以表示为

$$\omega = 2\pi f = \frac{2\pi p_{\rm r} n}{60},\tag{9}$$

式中, K_{st} 为定子齿面积系数, R_{o} 为电机外半径, R_{i} 为 电机内半径, A_{sta} 为每极定子齿有效面积, A_{u} 为每极 单元面积, θ_{st} 为定子齿所占弧度, $\theta_{u} = 2\pi/p_{s}$ 为每单 元所占弧度, τ_{col} 为线圈宽度, p_{s} 为定子极数, p_{r} 为转 子极数,f为感应频率,n为转子转速, K_{e} 为感应电势 波形系数.

由电枢电流与电负荷之间的关系^[8],峰值电流 可以表示为

$$I_{\rm pk} = \frac{\sqrt{2} \, a \pi A_{\rm av} R_{\rm av}}{m N_{\rm ph}},\tag{10}$$

式中, A_{av} 为线圈平均电负荷, I_{a} 为相电流有效值,a为每相绕组并联匝数, $R_{av} = (R_{i} + R_{o})/2$ 为平均半径. 定义 $\gamma = R_{i}/R_{o}$ 为内外径之比,将 ω , I_{pk} , K_{st} 和 θ_{u} 代入,化简可得:

$$P_{\rm em} = \frac{\sqrt{2}}{120} \eta K_{\rm pm} K_e K_{\rm br} \pi^2 a R_o^3 A_{\rm av} B_{\rm avg} P_{\rm r} n \cdot \left((1+\gamma) \theta_{\rm st} + \frac{2\tau_{\rm coil}}{R_o} \right) (1-\gamma^2) .$$
(11)

在确定永磁尺寸、电机外径和电枢绕组的电负 荷之后,电机的电磁功率除了受磁压降的影响之外, 还受每相绕组串联匝数、转子极数、定子齿弧度、绕 组线圈宽度等参数影响.

2.2 基于正交实验的初始设计

根据 AFPMMM 电磁功率与电机尺寸的关系可 知,感应电动势(Electromotive Force, EMF)的幅值 (记为 U_{EMF})与磁通传递系数、角速度、磁通的传导 有效面积有关,而这些都与转子极数有关,故选择转 子极数作为初始设计因子是比较合理的.如果永磁 体占比过大,不仅会产生过多的漏磁,影响永磁体的 利用率,还会使得转子轴向受力不均,发生剧烈的振 动,甚至不能运行.为了减小轴向受力波动,电机须 拥有比较均匀的气隙磁通密度,综合考虑,选定软磁 占比 p_1 、转子极数 p_2 、气隙长度 p_3 作为初始设计因 子,选择 EMF、感应电动势的总谐波畸变率(Total Harmonic Distortion, THD,其量值记为 η_{THD})、 $B_{\text{avg}}、齿$ 槽转矩 T_{cog}和转子轴向受力波动 ΔF₂ 作为性能目标, 其水平值如表 1 所示.其中软磁占比定义为:保证每 单元 NdFeB 极角与软磁材料极角之和为 60°的前提 下,软磁材料极角与 NdFeB 极角的比值.

表1 初始设计因子

Table 1	Initial design factors		
初始设计因子	水平	数值	
	1	0.5	
软磁占比 p1	2	1	
	3	2	
	1	4	
转子极数 p2	2	5	
	3	7	
	1	1.2	
气隙长度 p_3/mm	2	1.0	
	3	0.8	

如表 2 所示, K_1 , K_2 , K_3 分别表示单个设计因子 在不同水平时性能目标的平均值,对实验数据进一 步分析发现,4 极和 5 极的 EMF 都远大于 7 极,但是 4 极的负面影响也最大,选 4 极转子时,波动非常剧 烈,因此为了保证足够大的 EMF,又要使得电机具备 良好的运行性能,5 极是最好的选择.软磁占比虽然 对 ΔF_2 和 THD 有一定影响,但是所占比重不大,而 且对其他的各项参数的影响均不明显,综合考虑永 磁材料的成本,应该选择水平 3.通过分析极差发现,

表 2 各设计因子在不同水平时性能目标的平均值及极差

 Table 2
 Average value and range of performance

targets of each design factor at different levels

性能目标	设计因子	K_1	<i>K</i> ₂	K_3	极差
	p_1	12.630	12.880	12.410	0.470
EMF/V	p_2	14.510	13.450	9.750	4.760
	p_3	11.010	12.780	13.530	2.520
	p_1	22.840	29.210	29.120	6.370
THD/%	p_2	64.740	6.720	9.542	58.018
	p_3	21.350	27.670	32. 151	10. 801
	p_1	0.357	0.385	0.323	0.062
$T_{\rm cog}/({\rm N}\cdot{\rm m})$	p_2	0.819	0.147	0.098	0.721
	p_3	0.346	0.371	0.347	0.025
	p_1	62.640	64.160	72.200	9.560
$\Delta F_z/{ m N}$	p_2	152. 282	28.020	18.030	134. 252
	p_3	53.050	66.830	78.460	25.410
	p_1	0. 263	0.267	0.263	0.004
$B_{\rm avg}/{ m T}$	p_2	0.250	0.263	0.280	0.030
	p_3	0.237	0.257	0.300	0.063

气隙长度对 EMF 和 B_{avg} 的影响比重最大,其次是 ΔF_{z} ,对 T_{cog} 和 THD 的影响则较小.为了减小 ΔF_{z} ,同 时保证具有较大的 B_{avg} 和 EMF,将励磁定子侧气隙 长度和靠近电枢侧气隙长度选为水平 2.综合以上分 析,AFPMMM 的初始设计参数如表 3 所示.

表 3 AFPMMM 的初始参数

Table 3 Initial parameters of the AFPMMM

参数	数值	参数	数值
额定功率 P_{em}	100 W	额定转速 n	1 000 r/min
永磁体外直径 R_o	140 mm	相数 m	3
永磁体内直径 R_i	80 mm	气隙长度 δ	1 mm
电机轴向长度 L _a	50 mm	AlNiCo 厚度 H _{al}	10 mm
电枢绕组边宽 $ au_{ m coil}$	15 mm	NdFeB 极宽 $\theta_{ m nd}$	20°
转子轴向长度 l _r	8 mm	电枢绕组匝数 N _a	100
转子极宽 θ_r	46°	励磁绕组匝数 N _m	40
定转子极数 p_s/p_r	6/5	定子极宽 θ_{st}	30°

3 响应面试验设计

3.1 优化目标和优化因子的选取

本文为了在减小实验次数的同时保证设计的精度,采用 BBD 方法,将转子极宽、转子齿斜角、电枢定子极宽作为优化变量,EMF、感应电动势的 THD 和齿槽转矩 *T*_{cog}作为优化目标,参数设计要求如表 4 所示,其数学模型可以用式(12)和式(13)表示.优化目标选取应满足互相制约的条件,例如由于转子面积和电枢定子面积的改变,齿槽转矩可能会变大,也可能会变小,即使 EMF 增加了,也可能会有较差的波形.优化目标具有相互制约的关系,这一点在响应面实验中得到了验证.

minmize:
$$F(X) = (\frac{1}{U_{\text{EMF}}}, \eta_{\text{THD}}, T_{\text{cog}}),$$
 (12)

$$X = (\theta_{\rm r}, \beta, \theta_{\rm st}), \qquad (13)$$

式中,F(X)表示优化函数,X表示优化变量.

Table 4 Design requirements of the AFPMMM

	参数	数值
	转子极宽	$44^{\circ} \leq \theta_{\rm r} \leq 48^{\circ}$
优化因子	转子齿斜角	$0^{\circ} \leq \!$
	定子极宽	$25^\circ \leq \theta_{st} \leq 35^\circ$
	感应电动势	$U_{\rm EMF} \ge 15 \ { m V}$
优化目标	感应电动势波形畸变率	$\eta_{ ext{THD}} \! \leqslant \! 9\%$
	齿槽转矩	$T_{\rm cog} \leq 0.15 \ { m N} \cdot { m m}$

3.2 Box-Behnken 优化设计

最常用的响应面法主要包括 CCD 和 BBD,两者 都可以用来拟合二阶模型.对于 BBD 设计,主要包括 空间边缘实验点和中心试验点两种不同类型,在一 定的实验因素范围内,实验运行成本比 CCD 低.

通用的二阶响应面模型可以表示为

 $y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon$, (14) 式中, β_0 表示常数项, β_i 表示一阶系数, β_{ii} 表示二阶 系数, β_{ij} 表示二阶交互项系数, ε 表示误差常量.实际 的拟合方程,应该根据每一项对目标函数的影响大 小,进行修改.

本次优化试验安排和仿真结果如表 5 所示,有 A,B,C 三个优化因子,三因子的 CCD 设计一般需要 20 次试验,而 BBD 设计可以保证旋转性且只需要 15 次.三因子的 BBD 设计是一种不完全的三水平析 因设计,选择的试验点具有特殊性,可以在自变量的 变化范围内评价因素对目标的非线性影响.

表 5 BBD 试验设计表及其仿真结果

Table 5 BBD table and simulation results

序号	θ _r ∕ (°)	β⁄ (°)	$ heta_{ m st}/$ (°)	A	В	С	EMF/ V	THD∕ %	<i>T</i> _{cog} ∕ (N⋅m)
1	44	0	30	-1	-1	0	13.42	7.60	0.067
2	48	0	30	1	-1	0	14.12	8.29	0.154
3	44	8	30	-1	-1	0	14.32	8.11	0.206
4	48	8	30	1	1	0	15.16	8.17	0. 131
5	44	4	25	-1	0	-1	12.61	11.17	0.130
6	48	4	25	1	0	-1	13.82	9.27	0.132
7	44	4	35	-1	0	1	15.34	7.44	0.119
8	48	4	35	1	0	1	15.78	8.10	0. 186
9	46	0	25	0	-1	-1	12.78	9.21	0. 101
10	46	8	25	0	1	-1	13.24	10.70	0.175
11	46	0	35	0	-1	1	15.34	8.11	0.109
12	46	8	35	0	1	1	15.72	10.09	0.157
13	46	4	30	0	0	0	14.31	9.09	0. 181
14	46	4	30	0	0	0	14. 98	7.23	0.174
15	46	4	30	0	0	0	14.36	5.97	0.165

对表 5 的实验结果进行数据分析可得优化目标 的响应面模型,表 6 展示了每个模型的可信度.其中 EMF 的 Linear 模型和 *T*_{cog} 的 Quadratic-M 模型 *P* 值 都小于 0.01,且信噪比远大于 4 dB,有较高的可信 度;THD 的 Quadratic-M 模型在去掉 *P* 值大于 0.1 的 项之后,*P* 值小于 0.05,信噪比略大于 4 dB,只具备 一定的可信度.

Table 6	Evaluation of optimization objective models				
目标参数	模型	<i>P</i> 值	信噪比/dB		
EMF	Linear	<0.000 1	28.503		
THD	Quadratic-M	0.012 8	5		
$T_{ m cog}$	Quadratic-M	0.000 9	14. 812		

表 6 优化目标模型评估

由图 3 的试验点立方体可见,A,B,C 分别代表 θ_r,β,θ_{st}三个因子,"+"表示增加方向,"-"表示减小 方向,三个因子的增加都可以在一定程度上提高 EMF 幅值.随着定子极宽 θ_{st}的增加,θ_r 和β 对 EMF 的响应面在逐渐升高,但是响应面的形状并没有较 大的改变.不难发现,EMF 在转子极宽为 44°、转子齿 斜角为 0°时最小,而在转子极宽为 48°、转子齿斜角 为 8°时最大.

- 图 3 优化变量与 EMF(V) 的试验点立方体
- Fig. 3 Test point cube between EMF and optimization variables

图 4 则表示不同定子极宽下,转子齿斜角和转 子极宽对 EMF 的影响,可见保持线圈匝数不变的情 况下,随着定子极宽的增大,EMF 是增大的.但是电 机实际安装时,定子极宽增加过大会改变线圈匝数, 因此本文选取极宽 35°作为上限.

由图 5 可见,改进之后的模型中,THD 仅与 θ_{st} 有关;图 6 中 θ_r 和 θ_{st} 对 THD 的响应面为凹面,由 等高线可知,THD 在 θ_{st} 等于 31°的附近有最小值. 如图 7 所示,在正视平面上 T_{cog} 的值沿着对角线先 增大后减小,每个变量单独增大都会导致 T_{cog} 的值 变大,两个变量同时变化可以减小 T_{cog} 的值.图 8 中 θ_r 和 β 对 T_{cog} 的响应面为凸面,随着 θ_{st} 的增大, θ_r 和 β 对 T_{cog} 的响应面先升高后降低,不难看出 T_{cog} 的最小值在 θ_r 取 44°、 β 取 0°或者 θ_r 取 48°、 β 取 8° 响应点的附近.

Fig. 5 Test point cube between THD and optimization variables

南京信息工だメ学学报(自然科学版),2021,13(5):620-627

Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(5):620-627

图 6 $\beta = 0^{\circ}$ 时, θ_{r} 和 θ_{st} 对 THD 的响应面

Fig. 6 The response surface of θ_r and θ_{st} to THD at $\beta = 0^\circ$

如图9所示,当 θ_{st} 增大, θ_{r} 和 β 对不同方案期望 值的响应面发生了变化,可见 θ_{st} 等于25°给出的解 背离期望值过大,不适合作为可行解.另外 θ_{st} 增大 时,整个曲面在升高,方案的期望值越大,作为可行 解的概率越大.不难看出,可行解在 θ_{r} 取44°, β 取0° 或者 θ_{r} 取48°, β 取8°响应点附近的概率较大.

4 优化结果分析

通过 RSM 优化可以得到如表 7 所示的几种优 化方案,本文利用有限元软件分别对两种优化方案 进行了验证并与原参数下电机性能进行对比.由 RSM 得出的优化方案,预测值和仿真结果相近,这证 明了本文使用的方法对多目标优化问题求解具备有 效性.

此外,选择 RSM1 作为最终优化方案时,从图 10 和图 11 可见,优化后与优化前相比,其优势在于具 有较小的齿槽转矩的同时还提高了 EMF 的幅值.

图 8 $\theta_{st} = 25^{\circ}$ 和 $\theta_{st} = 35^{\circ}$ 时, θ_r 和 β 对 T_{cog} 的响应面 Fig. 8 The response surface of θ_r and β to T_{cog} at $\theta_{st} = 25^{\circ}$ (a) and $\theta_{st} = 35^{\circ}$ (b)

表 7 优化前后的有限元仿真结果比较

Table 7 Comparison of FE simulation results before and after optimization

方案	$\theta_{\rm r}/(^{\circ})$	β ∕(°)	$\theta_{\rm st}/(^{\circ})$	EMF/V	THD/%	$T_{\rm cog}/({\rm N}{\boldsymbol{\cdot}}{\rm m})$
RSM1	48.0	8.0	30.0	15.32	8.17	0.136
RSM2	46.7	0.0	33.6	15.11	8.47	0.131
优化前	46.0	0.0	30.0	13.21	8.24	0.176

5 结论

本文在轴向磁场永磁电机的基础上提出了一种 双侧气隙结构不对称的 AFPMMM,该电机将调磁绕 组和电枢绕组分开放置,有效地减小了电枢绕组对 永磁体磁场的干扰和绕组的互感损耗.针对 AFPMMM的结构优化问题,提出了结合正交实验的 RSM 的优化方法,并使用有限元仿真分析证明了其 有效性.在优化方案 RSM1中,感应电动势的总谐波

图 9 $\theta_{st} = 25^{\circ} \pi \theta_{st} = 35^{\circ} \text{时}, \theta_{r} \pi \beta$ 对方案期望值的响应面 Fig. 9 The response surface of θ_{r} and β to the expected value of the scheme at $\theta_{st} = 25^{\circ}$ (a) and $\theta_{st} = 35^{\circ}$ (b)

畸变率得到了改善,并使得感应电动势增加了 15.9%,齿槽转矩减小了 22.7%,这使得 AFPMMM

发电运行时具有较小的启动力矩.优化结果表明,结 合正交实验的 RSM 对于求解带约束条件的多目标 优化问题具有较好的优势.

参考文献

References

- [1] Asko P.Design of axial-flux permanent-magnet low-speed machines and performance comparison between radialflux and axial-flux machines[M].Lappeenranta, Finland: Lappeenranta University of Technology, 2005:21-23
- [2] 林鹤云,阳辉,黄允凯,等.记忆电机的研究综述及最新进展[J].中国电机工程学报,2013,33(33):57-67,8

LIN Heyun, YANG Hui, HUANG Yunkai, et al. Overview and recent developments of memory machines [J]. Proceedings of the CSEE, 2013, 33(33):57-67,8

- [3] 周大瑞.浅析气隙磁通可调永磁电机的分类[J].科技展望,2017,27(31):60-61 ZHOU Darui.Analysis on the classification of air gap flux adjustable permanent magnet motor [J]. Science and Technology Outlook,2017,27(31):60-61
- [4] 温嘉斌,于岚.田口方法在永磁同步电机结构优化中的应用[J].哈尔滨理工大学学报,2019,24(5):64-69
 WEN Jiabin, YU Lan. Application of Taguchi method in structure optimization of permanent magnet synchronous motor[J]. Journal of Harbin University of Science and Technology, 2019, 24(5):64-69
- [5] 陈硕,汤琼,彭智俊,等.基于正交试验法优化表贴式 永磁同步电机永磁体[J].微特电机,2019,47(10): 36-38,41
 CHEN Shuo, TANG Qiong, PENG Zhijun, et al. Optimization of permanent magnet synchronous motor based on or-

those of permanent might synchronizes into based on of those those and those those and those those and those those and the synchronizes into a synchronize those and the synchronizes and th

综合优化[J].微电机,2020,53(3):33-37,54 SHI Shilei,KANG Erliang,SHI Guiying.Optimization deJournal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(5):620-627

sign of a permanent magnet linear motor using finite element and Taguchi method [J]. Micromotors, 2020, 53 (3):33-37,54

- Gong Y, Zhao S W, Luo S F. Design and optimization of switched reluctance motor by Taguchi method [C] // 2018
 13th IEEE Conference on Industrial Electronics and Applications, 2018;1876-1880
- [8] 李少龙.垂直轴风力发电用轴向磁通永磁发电机研究
 [D].焦作:河南理工大学,2018
 LI Shaolong. Research on axial flux permanent magnet generator for vertical axis wind power generation [D]. Jiaozuo: Henan Polytechnic University, 2018
- [9] Zhu X Y, Wu W Q, Quan L, et al. Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost [J]. IEEE Transactions on Energy Conversion, 2019,34(3):1178-1189
- [10] Semon A, Melcescu L, Craiu O, et al. Design optimization of the rotor of a V-type interior permanent magnet synchronous motor using response surface methodology [C] // 2019 11th International Symposium on Advanced Topics in Electrical Engineering, 2019;1-4
- [11] 刘彦呈,刘伟民,郭昊昊.基于田口法的永磁同步推进 电机优化设计[J].微特电机,2018,46(3):18-20,24
 LIU Yancheng, LIU Weimin, GUO Haohao. Optimal design for permanent magnet synchronous motor of the thruster based on Taguchi method[J].Small & Special Electrical Machines,2018,46(3):18-20,24

- [12] 邱瑞林,华青松,史成龙.基于田口法定子冲片优化研究[J].微特电机,2020,48(2):13-16
 QIU Ruilin,HUA Qingsong,SHI Chenglong.Optimization of stator lamination based on Taguchi method[J].Small & Special Electrical Machines,2020,48(2):13-16
- [13] 杜晓彬,黄开胜,谭耿锐,等.基于响应面法的永磁电 机转矩多目标优化[J].微特电机,2019,47(6):20-23
 DU Xiaobin, HUANG Kaisheng, TAN Gengrui, et al. Multi-objective optimization of torque for permanent magnet motor based on response surface method [J]. Small & Special Electrical Machines,2019,47(6):20-23
- [14] Khatab M F H, Zhu Z Q, Li H Y, et al. Comparative study of novel axial flux magnetically geared and conventional axial flux permanent magnet machines [J].CES Transactions on Electrical Machines and Systems, 2018, 2(4): 392-398
- [15] Zhao W L, Lipo T A, Kwon B I. Comparative study on novel dual stator radial flux and axial flux permanent magnet motors with ferrite magnets for traction application [J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4
- [16] 李念,林明耀,杨公德,等.串联永磁轴向磁场磁通切 换记忆电机设计与调磁特性分析[J].中国电机工程 学报,2017,37(21):6190-6197
 LI Nian,LIN Mingyao, YANG Gongde, et al. Design and flux regulation performance investigation of series permanent magnet axial flux-switching memory machine [J]. Proceedings of the CSEE,2017,37(21):6190-6197

Multi-objective optimization design of axial-flux permanent magnet memory motor based on response surface method

CAO Yongjuan^{1,2} FENG Liangliang¹

1 School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044

2 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,

Nanjing University of Information Science & Technology, Nanjing 210044

Abstract Here, the Response Surface Method (RSM) is used to optimize the structure of a new Axial-Flux Permanent Magnet Memory Motor (AFPMMM) proposed in this paper. Main influencing parameters of the motor are preliminarily determined based on analysis of the electromagnetic performance equation and Orthogonal Experiment (OE), among which, three factors including soft magnetic ratio, number of rotor poles and air gap length, are selected as the design factors of OE. Then Electromotive Force (EMF), Total Harmonic Distortion (THD) and cogging torque are determined as the optimization factors, and the RSM is used as the optimization method. The Response Surface (RS) experiment is established by using the finite element software Ansoft Maxwell and the RS design software Design Expert. The simulation parameters and fitting curves of the motor under the combination model of different design factors are obtained. Different optimization methods are combined to meet the specific design requirements in this paper. Theoretical analysis and experimental results verify the feasibility and effectiveness of the proposed motor and optimization method. Then the optimization scheme is obtained through comparative analysis of the test data. The results show that the optimized motor not only reduces the cost of permanent magnet material, but also ensures good EMF and small axial force fluctuation.

Key words memory motor; response surface method(RSM); multi-objective optimization; finite element analysis(FEA)