DOI:10.13878/j.cnki.jnuist.2019.04.013

周帅1 肖敏1 邢蕊桃1 张跃中1 程尊水2

非对称双环神经网络系统的稳定性和 Hopf 分岔

摘要

环型结构在神经网络中普遍存在, 目前对环型神经动力学分岔研究大多数 局限于单环情形.值得注意的是,神经网 络由成千上万个神经元耦合而成,这些 复杂的神经元网络结构不可能只由一个 环形结构来准确表述,因此研究具多环 拓扑的神经网络模型更具实际意义.本 文提出了一种非对称双环神经元网络模 型,选择单环的时滞和为分岔参数,分析 了双环模型的稳定性和 Hopf 分岔.最后 给出数值仿真对结论进行了验证.

关键词

神经元网络;Hopf 分岔;离散时滞; 环型网络

中图分类号 O241.8 文献标志码 A

收稿日期 2019-06-28

资助项目 国家自然科学基金 (61573194);江 苏省自然科学基金(BK20181389) 作者简介

肖敏(通信作者),男,博士,教授,博士生 导师,感兴趣的研究方向为复杂系统优化控 制.candymanxm2003@ aliyun.com

- 1 南京邮电大学 自动化学院 人工智能学 院,南京,210003
- 2 青岛科技大学 数理学院,青岛,266061

0 引言

近年来,随着计算机技术以及人工智能的快速发展,神经元网络 得到了越来越多研究者们的青睐.无论是在人工神经元网络的研究还 是生物神经元网络的研究都已经取得相对成熟的理论结果和应用.目 前比较为大家所熟知的神经元网络应用有图像识别^[1]、信号去噪^[2]、 深度学习^[34]、智能控制^[5]、故障诊断^[6]等方面.对于神经元网络的研 究,有助于加强人们对大脑的认知以及建立更加准确的人工神经元 网络模型和深度学习算法.但由于神经元网络的复杂性,人们对神经 元网络的简单建模和分析是远远不够的.当前对神经元网络的研究趋 势是低维向高维度的转变、简单拓扑结构向复杂拓扑结构的转变.

环型拓扑结构是神经元网络中一种重要的拓扑结构,该结构存 在于小脑^[7]、基因^[8]、大脑皮层等许多神经结构中^[9-10].通过对环型神 经元网络的研究,人们可以深入了解环型神经元网络的动态行为机 理.环型神经元网络的拓扑结构主要分为单向拓扑连接结构以及双向 拓扑连接结构.对于环型神经元网络的研究已经取得了许多杰出的成 果^[9-12].令人遗憾的是,前人对于环型神经元网络的研究大多局限于 单环结构的研究,却忽视了环状神经元网络结构环与环之间的拓扑 联系.单环神经元网络模型的研究对神经元网络的研究是一种进步, 但是对于神经元网络模型的研究对神经元网络的研究是一种进步, 但是对于神经元网络的研究来讲仍然有很大的研究空间.此外,Cheng 等^[13]研究了一类三个三角形的环型时滞耦合神经元网络,但是其每 个环都具有三个节点,不具有非对称的一般性.本文考虑了具有不同 节点数的两个环型神经元网络的耦合结构,对其进行稳定性和 Hopf 分岔分析.

在神经元网络信息的传递过程中,信息在神经元细胞内的处理 需要消耗一定时间,此外神经元细胞中的突触前细胞将信息传递给 突触后细胞的传递也需要一定的时间做准备.虽然神经元传递信息的 时间在人类观感中比较快,但是一般认为神经网络的时滞是不可避 免的,也是不能忽视的一个重要的参数.在当前神经元网络的研究中, 人们对神经元网络中时滞的研究主要有分布时滞^[14]、泄漏时滞^[15]以 及离散时滞^[16]等.时滞又叫时延,它们对于系统动态性能的影响是十 分显著的.时滞往往会导致系统的动力学行为变差,使得系统的稳定 区域变窄,甚至在比较苛刻的情况下,时滞会导致系统平衡点失稳.因 此,研究神经元网络中时滞对系统动力学行为的影响具有特别重要 Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2019, 11(4):446-452

的理论价值和实践价值.

Hopf 分岔理论是研究者们研究系统动力学稳定 性的一个重要的工具.通过对系统某个指定参数进 行 Hopf 分岔分析,可以根据系统某一个参数的变 化,直观地观测到系统动力学行为的变化.当系统的 某个参数连续变化穿越一个临界值(分岔点)时,系 统会在某个其原本稳定平衡点的外围出现一个极限 环,此时系统由极限环包围的平衡点由稳定变成不 稳定.

1 非对称双环神经元网络数学模型

本节讨论非对称双环神经元网络模型,其拓扑 如图1所示.由图1可知,模型由2个单向连接的环 组成.其中一个有3个神经元,另一个有4个神经元. 神经元1是一个双环耦合节点.根据图1的拓扑关 系,非对称双环神经元网络模型可表示为

$$\begin{cases} v_{1}(t) = -\alpha_{1}v_{1}(t) + \beta_{1}f_{1}(v_{1}(t)) + \gamma_{3}g_{3}(v_{3}(t-\tau_{3})) + \\ \gamma_{6}g_{6}(v_{6}(t-\tau_{6})), \\ \dot{v}_{2}(t) = -\alpha_{2}v_{2}(t) + \beta_{2}f_{2}(v_{2}(t)) + \gamma_{1}g_{1}(v_{1}(t-\tau_{1})), \\ \dot{v}_{3}(t) = -\alpha_{3}v_{3}(t) + \beta_{3}f_{3}(v_{3}(t)) + \gamma_{2}g_{2}(v_{2}(t-\tau_{2})), \\ \dot{v}_{4}(t) = -\alpha_{4}v_{4}(t) + \beta_{4}f_{4}(v_{4}(t)) + \gamma_{1}g_{1}(v_{1}(t-\tau_{1})), \\ \dot{v}_{5}(t) = -\alpha_{5}v_{5}(t) + \beta_{5}f_{5}(v_{5}(t)) + \gamma_{4}g_{4}(v_{4}(t-\tau_{4})), \\ \dot{v}_{6}(t) = -\alpha_{6}v_{6}(t) + \beta_{6}f_{6}(v_{6}(t)) + \gamma_{5}g_{5}(v_{5}(t-\tau_{5})), \end{cases}$$

其中: $v_i(t) = dv_i/dt(i=1,2,...,6)$, $v_i(t)$ 代表系统第 *i*个神经元在*t*时刻的状态. $\alpha_i > 0(i=1,2,...,6)$ 是 常量, $\beta_i(i=1,2,...,6)$ 和 $\gamma_i(i=1,2,...,6)$ 表示连 接权重,并且满足 $\beta_i \neq 0$ 和 $\gamma_i \neq 0$, $f_i(\cdot)(i=1,2,...,6)$ 6)和 $g_i(\cdot)(i=1,2,...,6)$ 表示神经元网络的激活 函数,两神经元间在信息传递时的时滞用 $\tau_i(i=1,2,...,6)$ 表示.

注1 模型(1)具有非对称结构,即双环节点的 个数不相等.另外,自连接项β_if_i(v_i(t))的出现也增 加了动力学的复杂性.当双环的节点个数相等,并且 不考虑自连接项(β_i = 0)时,模型(1)退化为文献 [13]中的模型.

在系统(1)中,共有6个时滞,为了简化问题的 研究,假设2个环型神经元网络的时滞和相等,即:

假设1
$$\tau = \tau_1 + \tau_2 + \tau_3 = \tau_1 + \tau_4 + \tau_5 + \tau_6.$$

做如下変換:

$$\begin{cases} x_1(t) = v_1(t - \tau_1 - \tau_2 - \tau_4 - \tau_5), \\ x_2(t) = v_2(t - \tau_2 - \tau_4 - \tau_5), \\ x_3(t) = v_3(t - \tau_4 - \tau_5), \\ x_4(t) = v_4(t - \tau_2 - \tau_4 - \tau_5), \\ x_5(t) = v_5(t - \tau_2 - \tau_5), \\ x_6(t) = v_6(t - \tau_2), \end{cases}$$
系统(1) 変为
 $(\dot{x}_1(t) = -\alpha_1 x_1(t) + \beta_1 f(x_1(t)) + \gamma_3 g_3(x_3(t - \tau))) + \gamma_6 g_6(x_6(t - \tau)), \\ \dot{x}_2(t) = -\alpha_2 x_2(t) + \beta_2 f(x_2(t)) + \gamma_1 g_1(x_1(t)), \\ \dot{x}_3(t) = -\alpha_3 x_3(t) + \beta_3 f(x_3(t)) + \gamma_2 g_2(x_2(t)), \\ \dot{x}_4(t) = -\alpha_5 x_5(t) + \beta_5 f(x_5(t)) + \gamma_4 g_4(x_4(t)), \\ \dot{x}_6(t) = -\alpha_6 x_6(t) + \beta_6 f(x_6(t)) + \gamma_5 g_5(x_5(t)). \end{cases}$
(2)

通过变换,含有多时滞的系统(1)变为仅含一个 时滞的等价系统(2).做如下假设:

假设 2 $f_i(\cdot) \in C^3(\mathbf{R}), g_i(\cdot) \in C^3(\mathbf{R}),$ $f_i(0) = g_i(0) = 0, f'_i(0) g'_i(0) \neq 0$ (*i* = 1,...,6).

根据假设2可知:原点
$$O(0,0,0,0,0,0)$$
是系统
(2)的平衡点.系统(2)在原点处的线性化系统为
 $\begin{pmatrix} \dot{x}_1(t) = -\theta_1 x_1(t) + \eta_3 x_3(t-\tau) + \eta_6 x_6(t-\tau), \\ \dot{x}_2(t) = -\theta_2 x_2(t) + \eta_1 x_1(t), \\ \dot{x}_3(t) = -\theta_3 x_3(t) + \eta_2 x_2(t), \\ \dot{x}_4(t) = -\theta_4 x_4(t) + \eta_1 x_1(t), \\ \dot{x}_5(t) = -\theta_5 x_5(t) + \eta_4 x_4(t), \\ \dot{x}_6(t) = -\theta_6 x_6(t) + \eta_5 x_5(t), \\$ 其中: $\theta_i = \alpha_i - \beta_i f'_i(0), \eta_i = \gamma_i g'_i(0), i = 1, \cdots, 6.$
系统(3)的特征方程为
 $M(\lambda) - e^{-\lambda \tau} N(\lambda) = 0,$ (4)
其中:

$$\begin{split} M(\lambda) &= \lambda^6 + L_1 \lambda^5 + L_2 \lambda^4 + L_3 \lambda^3 + L_4 \lambda^2 + L_5 \lambda + L_6, \\ N(\lambda) &= K_1 \lambda^3 + K_2 \lambda^2 + K_3 \lambda + K_4, \\ \mbox{!}\label{eq:linearized_states} \\ \mbox{!}\label{eq:l$$

$$\begin{split} L_{k} &= \sum_{6 \geq l_{1} > \cdots > l_{k} \geq 1} \theta_{l_{1}} \cdots \theta_{l_{k}} (k = 1, 2, \cdots, 6) + \prod_{i \in \Omega_{4}} \eta_{i}, \\ K_{1} &= \prod_{i \in \Omega_{1}} \eta_{i}, \\ K_{2} &= \prod_{i \in \Omega_{1}} \eta_{i} \cdot \sum_{j \in \Omega_{3}} \theta_{j} + \prod_{i \in \Omega_{4}} \eta_{i}, \\ K_{3} &= \prod_{i \in \Omega_{1}} \eta_{i} \cdot \sum_{m, n \in \Omega_{3}, m \neq n} \theta_{m} \theta_{n} + \prod_{\kappa \in \Omega_{4}} \eta_{\kappa} \cdot \sum_{j \in \Omega_{2}} \theta_{j}, \\ K_{4} &= \prod_{i \in \Omega_{3}} \theta_{i} \cdot \prod_{k \in \Omega_{1}} \eta_{k} + \prod_{j \in \Omega_{2}} \theta_{j} \cdot \prod_{l \in \Omega_{4}} \eta_{l}, \\ \Omega_{1} &= \{1, 2, 3\}, \quad \Omega_{2} = \{2, 3\}, \quad \Omega_{3} = \{4, 5, 6\}, \\ \Omega_{4} &= \{1, 4, 5, 6\}. \end{split}$$

2 无时滞情形

在研究时滞系统稳定性和 Hopf 分岔时,要求系统在无时滞条件下是稳定的.本节讨论在无时滞的前提下非对称双环神经网络(1)的稳定性.

当
$$\tau = 0$$
时,特征方程(4)退化为
 $M(\lambda) - N(\lambda) = 0,$ (5)

即:

$$\begin{split} \lambda^{6} + L_{1}\lambda^{5} + L_{2}\lambda^{4} + (L_{3} - K_{1})\lambda^{3} + (L_{4} - K_{2})\lambda^{2} + \\ & (L_{5} - K_{3})\lambda + L_{6} - K_{4} = 0. \\ & \text{给出如下假设:} \\ & \text{假设 3} \quad \Delta_{i} > 0(i = 1, 2, \cdots, 6), \\ & \text{其中:} \\ & \Delta_{1} = L_{1} > 0, \\ & \Delta_{2} = \begin{vmatrix} L_{1} & L_{3} - K_{1} \\ 1 & L_{2} \end{vmatrix} > 0, \\ & \Delta_{2} = \begin{vmatrix} L_{1} & L_{3} - K_{1} \\ 1 & L_{2} \end{vmatrix} > 0, \\ & \Delta_{4} = \begin{vmatrix} L_{1} & L_{3} - K_{1} \\ 1 & L_{2} \end{vmatrix} > 0, \end{split}$$

$$\begin{split} \Delta_{3} &= \begin{vmatrix} 1 & L_{2} & L_{4} & K_{2} \\ 0 & L_{1} & L_{3} - K_{1} \end{vmatrix} > 0, \\ 0 & L_{1} & L_{3} - K_{1} \end{vmatrix} > 0, \\ \Delta_{4} &= \begin{vmatrix} L_{1} & L_{3} - K_{1} & L_{5} - K_{3} & 0 \\ 1 & L_{2} & L_{4} - K_{2} & L_{6} - K_{4} \\ 0 & L_{1} & K_{3} - K_{1} & L_{5} - K_{3} \\ 0 & 1 & L_{2} & L_{4} - K_{2} \end{vmatrix} > 0, \\ \Delta_{5} &= \begin{vmatrix} L_{1} & L_{3} - K_{1} & L_{5} - K_{3} & 0 & 0 \\ 1 & L_{2} & L_{4} - K_{2} & L_{6} - K_{4} & 0 \\ 0 & L_{1} & L_{3} - K_{1} & L_{5} - K_{3} & 0 \\ 0 & 1 & L_{2} & L_{4} - K_{2} & L_{6} - K_{4} \\ 0 & 0 & L_{1} & L_{3} - K_{1} & L_{5} - K_{3} \end{vmatrix} > 0, \\ \Delta_{6} &= (L_{6} - K_{4})\Delta_{5} > 0. \end{split}$$

定理1 在假设 1—3 成立的前提下, 当 $\tau = 0$ 时, 系统(1) 的原点是渐近稳定的.

证明根据赫尔维茨判据,如果系统特征多项 式的根全都有负实部,那么由系统特征方程各项系 数所构成的主行列式及其顺序主子式全都为正^[17]. 根据假设1—3可知:系统(1)满足赫尔维茨判据,因 此无时滞的非对称双环神经网络(1)是渐近稳定的. 证毕.

注 2 $\Delta_i > 0(i = 1, 2, \dots, 6)$ 是保证式(5)所有 特征根都具有负实部的充分必要条件.

3 有时滞情形

$$\diamond \lambda = i\omega$$
,特征方程(4) 可写为

 $M(i\omega) - [\cos(\omega\tau) - i\sin(\omega\tau)]N(i\omega) = 0$, (6) 对式(6)分离实虚部得:

$$(K_1\omega^3 - K_3\omega)\sin(\omega\tau) + (K_2\omega^2 - K_4)\cos(\omega\tau) = \omega^6 - L_2\omega^4 + L_4\omega^2 - L_6,$$
(7)
$$(-K_2\omega^2 + K_4)\sin(\omega\tau) + (K_1\omega^3 - K_3\omega)\cos(\omega\tau) = 0$$

$$-L_1\omega^5 + L_3\omega^3 - L_5\omega.$$
(8)

应用克拉默法则,可得:

$$\sin(\omega\tau) = \frac{q_1\omega^9 + q_2\omega^7 + q_3\omega^3 + q_4\omega^3 + q_5\omega}{q_6\omega^6 + q_7\omega^4 + q_8\omega^2 + q_9},$$

$$\cos(\omega\tau) = \frac{q_{10}\omega^8 + q_{11}\omega^6 + q_{12}\omega^4 + q_{13}\omega^2 + q_{14}}{q_6\omega^6 + q_7\omega^4 + q_8\omega^2 + q_9},$$

其中:

$$q_{1} = K_{1}, \quad q_{2} = K_{2}L_{1} - K_{1}L_{2} - K_{3},$$

$$q_{3} = K_{1}L_{4} - K_{2}L_{3} + K_{3}L_{2} - K_{4}L_{1},$$

$$q_{4} = K_{2}L_{5} - K_{1}L_{6} - K_{3}L_{4} + K_{4}L_{3},$$

$$q_{5} = K_{3}L_{6} - K_{4}L_{5}, \quad q_{6} = K_{1}^{2},$$

$$q_{7} = K_{2}^{2} - 2K_{1}K_{3}, \quad q_{8} = K_{3}^{2} - 2K_{2}K_{4},$$

$$q_{9} = K_{4}^{2}, \quad q_{10} = K_{2} - K_{1}L_{1},$$

$$q_{11} = K_{1}L_{3} - K_{4} - K_{2}L_{2} + K_{3}L_{1},$$

$$q_{12} = K_{2}L_{4} - K_{1}L_{5} - K_{3}L_{3} + K_{4}L_{2},$$

$$q_{13} = K_{3}L_{5} - K_{2}L_{6} - K_{4}L_{4}, q_{14} = K_{4}L_{9}.$$
將式(7) 和(8) 的两端同时平方后求和,可得:
 $\omega^{12} + p_{1}\omega^{10} + p_{2}\omega^{8} + p_{3}\omega^{6} + p_{4}\omega^{4} + p_{5}\omega^{2} + p_{6} = 0.$ (9)
 $\Leftrightarrow \phi = \omega^{2}, \vec{x}(9)$ 化为

$$p_1 = L_1^2 - 2L_2, \quad p_2 = L_2^2 + 2L_4 - 2L_1L_3,$$

$$p_3 = L_3^2 - K_1^2 - 2L_6 + 2L_1L_5 - 2L_2L_4,$$

$$p_4 = L_4^2 - K_2^2 + 2K_1K_3 + 2L_2L_6 - 2L_3L_5,$$

南京信息工ビメ学学报(自然科学版),2019,11(4):446-452

Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2019, 11(4):446-452

 $p_5 = L_5^2 - K_3^2 + 2K_2K_4 - 2L_4L_6$, $p_6 = L_6^2 - K_4^2$. **引理1** 对于特征方程(4),有如下结果:

1) 如果 $p_i \ge 0$ (*i* = 1,...,5) 且 $p_6 > 0$,那么特征 方程(4) 在 $\tau \ge 0$ 的情况下没有实部为零的根;

2) 如果 $p_6 < 0$,那么特征方程(4) 有一对纯虚 根 ±i ω_0 ,当且仅当 $\tau = \{\tau_0^j (j = 0, 1, \cdots)\}$,其中:

$${m au}_0^j$$
 =

$$\frac{1}{\omega_0} \left\{ \arccos\left(\frac{q_{10}\omega_0^8 + q_{11}\omega_0^6 + q_{12}\omega_0^4 + q_{13}\omega_0^2 + q_{14}}{q_6\omega_0^6 + q_7\omega_0^4 + q_8\omega_0^2 + q_9}\right) + 2j\pi \right\}.$$

证明

1) 当 $p_i \ge 0$ ($i = 1, \dots, 5$) 且 $p_6 > 0$ 时,有 $R(0) = p_6 > 0$ 且 $R'(\phi) \ge 0$.这说明式(9) 没有实根.因此特征方程(4) 没有根出现在虚轴上.

2) 当 $p_6 < 0$ 时, $R(0) = p_6 < 0.$ 又因为 $\lim_{\phi \to +\infty} R(\phi) = + \infty$,所以函数 $R(\phi)$ 至少存在一个 $\phi_0 > 0$ 使得 $R(\phi_0) = 0.$ 即,式(9) 有正根 $\omega_0 = \sqrt{\phi_0}$.因此 $\pm i\omega_0$ 是 特征方程(4) 的一对纯虚根.

证毕.

为了满足分岔的穿越条件,做如下假设:

假设4 $c\psi + v\zeta \neq 0$,

其中:

$$\begin{split} c &= -K_1 \omega_0^4 + K_3 \omega_0^2, \quad \upsilon = K_2 \omega_0^3 - K_4 \omega_0, \\ \psi &= (-6\omega_0^5 + 4L_2 \omega_0^3 - 2L_4 \omega_0) \sin(\omega_0 \tau_0^j) + \\ &\quad (5L_1 \omega_0^4 - 3L_3 \omega_0^2 + L_5) \cos(\omega_0 \tau_0^j) + \\ &\quad (3K_1 - K_2 \tau_0^j) \omega_0^2 + K_4 \tau_0^j - K_3, \\ \zeta &= (6\omega_0^5 - 4L_2 \omega_0^3 + 2L_4 \omega_0) \cos(\omega_0 \tau_0^j) + \\ &\quad (5L_1 \omega_0^4 - 3L_3 \omega_0^2 + L_5) \sin(\omega_0 \tau_0^j) - \\ &\quad \tau_0^j K_1 \omega_0^3 + (\tau_0^j K_3 - 2K_2) \omega_0. \end{split}$$

假设 $\lambda(\tau) = R(\tau) + iI(\tau)$ 是特征方程(4)的 解. 当 $\tau = \tau_0$ 时, $R(\tau_0) = 0$, $I(\tau_0) = \omega_0$. 对式(4)两端 求关于 τ 的导数, 可得:

$$\frac{\mathrm{d}\lambda\left(\tau\right)}{\mathrm{d}\tau} = \frac{-\lambda N(\lambda)}{\mathrm{e}^{\lambda\tau}M'(\lambda) + \tau N(\lambda) - N'(\lambda)},$$

则:

$$\frac{\mathrm{d}\lambda(\tau)}{\mathrm{d}\tau}\Big|_{\substack{\omega=\omega_0\\\tau=\tau_0^i}}=\frac{c+\mathrm{i}\upsilon}{\psi+\mathrm{i}\zeta},$$

易得:

$$Re\left\{\frac{d\lambda(\tau)}{d\tau}\Big|_{\tau} = \tau_{0}\right\} = \frac{c\psi + v\zeta}{\psi^{2} + \zeta^{2}}.$$

由于 $\psi^{2} + \zeta^{2} > 0$,所以 diag $\left\{Re\left(\frac{d\lambda(\tau)}{d\tau}\right|_{\tau} = \tau_{0}\right)\right\} = diag\{c\psi + v\zeta\}.$ 根据假设4知:穿越条件

Re
$$\left(\frac{d\lambda(\tau)}{d\tau} \middle| \tau = \tau_0\right) \neq 0$$
 成立.
引理 2^[18] 考虑如下指数多项式:
 $Q(\gamma, e^{-\gamma t_1}, e^{-\gamma t_2}, \dots, e^{-\gamma t_n}) =$
 $\gamma^n + p_1^{(0)}\gamma^{n-1} + \dots + p_{n-1}^{(0)}\gamma + p_m^{(0)} +$
 $e^{-\gamma t_1}[p_1^{(1)}\gamma^{n-1} + \dots + p_{n-1}^{(1)}\gamma + p_m^{(1)}] + \dots +$
 $e^{-\gamma t_n}[p_1^{(n)}\gamma^{n-1} + \dots + p_{n-1}^{(n)}\gamma + p_m^{(n)}],$

其中: $t_i(i=1,2,...,n) \ge 0, p_k^{(j)}(j=1,2,...,n;k=1, 2,...,m)$ 均为常数.当参数 $(t_1,t_2,...,t_n)$ 变动时,如果有零点出现或穿越虚轴,那么指数多项式 Q 右半平面零点的重数和才会发生变化.

基于引理1和2,可以得到下面的定理.

定理 2 在假设 1—4 成立的前提下,对于系统 (1),有如下结果成立:

1) 如果 $p_i \ge 0$ ($i = 1, \dots, 5$) 且 $p_6 > 0, 那么当$ $<math>\tau \ge 0$ 时,系统(1) 的原点是渐近稳定的;

2) 如果 $p_6 < 0$ 时,那么当 $\tau \in [0, \tau_0)$ 时,系统 (1) 的原点是渐近稳定的,当 $\tau > \tau_0$ 时,原点不稳 定,并且在 $\tau = \tau_0$ 经历 Hopf 分岔.

注3 如果系统(1)没有自连接项 $\beta_i f_i(v_i(t))$, 那么系统(1)的平衡点将会更容易稳定,在拥有相同 参数的情况下有更大的稳定区域和分岔阈值.

注4 前期神经网络分岔工作主要集中在单环 结构,本文考虑非对称双环神经网络模型,是对神经 动力学的重要补充.

4 数值算例与仿真

本节利用数值仿真验证得到的定理.取 tanh(·) 为激活函数,考虑如下系统:

$$\begin{cases} \dot{v}_{1}(t) = -\alpha_{1}v_{1}(t) + \beta_{1} \tanh(v_{1}(t)) + \\ \gamma_{3} \tanh(v_{3}(t - \tau_{3})) + \gamma_{6} \tanh(v_{6}(t - \tau_{6})), \\ \dot{v}_{2}(t) = -\alpha_{2}v_{2}(t) + \beta_{2} \tanh(v_{2}(t)) + \\ \gamma_{1} \tanh(v_{1}(t - \tau_{1})), \\ \dot{v}_{3}(t) = -\alpha_{3}v_{3}(t) + \beta_{3} \tanh(v_{3}(t)) + \\ \gamma_{2} \tanh(v_{2}(t - \tau_{2})), \\ \dot{v}_{4}(t) = -\alpha_{4}v_{4}(t) + \beta_{4} \tanh(v_{4}(t)) + \\ \gamma_{1} \tanh(v_{1}(t - \tau_{1})), \\ \dot{v}_{5}(t) = -\alpha_{5}v_{5}(t) + \beta_{5} \tanh(v_{5}(t)) + \\ \gamma_{4} \tanh(v_{4}(t - \tau_{4})), \\ \dot{v}_{6}(t) = -\alpha_{6}v_{6}(t) + \beta_{6} \tanh(v_{6}(t)) + \\ \gamma_{5} \tanh(v_{5}(t - \tau_{5})), \end{cases}$$
(10)

系统参数如表1所示.

表 1 数值仿真的初始参数					
Table 1	Table 1 The initial parameters of numerical simulation				
参数	初始值	参数	初始值		
α_1	2	eta_4	1		
α_2	2	β_5	1		
α_3	2	eta_6	1		
$lpha_4$	2	γ_1	-1		
α_5	2	γ_2	1		
α_6	2	γ_3	1		
$oldsymbol{eta}_1$	1	γ_4	1		
$oldsymbol{eta}_2$	1	γ_5	1		
β_3	1	γ_6	1		

首先,考虑 τ=0 的情形.通过计算,系统特征方 程各项系数所构成的主行列式及其顺序主子式均为 正(表 2).由定理 1 可知,在无时滞的条件下,系统 (10)的原点是渐近稳定的,如图2所示.

Table 2 The subdeterminant of the characteristic equation of system without delay

变量	计算值	变量	计算值
\varDelta_1	6	Δ_4	6. 78×10 ³
Δ_2	69	Δ_5	3.93×10^4
Δ_3	831	Δ_6	1.02×10^5

然后,考虑 $\tau \neq 0$ 的情形.经过计算得 $\omega_0 = 0.67$, $\tau_0 = 1.63.$ 根据定理2可知:当 $\tau = 1.55 \in [0, \tau_0]$ 时, 系统(1)的原点是渐近稳定的,如图3所示.当τ= 1.65 > τ₀ 时, 系统(1)的原点是不稳定的, 如图 4 所示.

结束语 5

本文提出了一种非对称的环型神经元网络模型, 然后应用 Hopf 分岔理论,探究双环神经网络的稳定 性和 Hopf 分岔,得到了其稳定条件和分岔判据.未来 工作将考虑多环结构神经网络的稳定性与分岔.

Fig. 2 The origin of system (10) is asymptotically stable when $\tau = 0$

参考文献

References

[1] 俞俊,谭敏,张宏源,等.基于用户点击数据的细粒度 图像识别方法概述[J].南京信息工程大学学报(自然 科学版),2017,9(6):567-574

YU Jun, TAN Min, ZHANG Hongyuan, et al. A survey of fine-grained image recognition based on user click data [J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2017, 9(6): 567-574

[2] Elhoseny M, Shankar K. Optimal bilateral filter and convolutional neural network based denoising method of medi-

Fig. 4 The origin of system (10) is unstable when $\tau = 1.65 > \tau_0$

cal image measurements [J] . Measurement , 2019 , 143 : 125-135

俞祝良.人工智能技术发展概述[J].南京信息工程大

[3] Schmidhuber J. Deep learning in neural networks: an

overview [J]. Neural Networks, 2015, 61:85-117

[4]

学学报(自然科学版),2017,9(3):297-304

YU Zhuliang.Review of progress on artificial intelligence [J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2017, 9(3): 297-304

- [5] Shin J H, Jun H B, Kim J G. Dynamic control of intelligent parking guidance using neural network predictive control [J]. Computers & Industrial Engineering, 2018,120:15-30
- [6] 陈龙龙,王波,袁玲.一种电力变压器神经网络故障诊断方法[J].南京信息工程大学学报(自然科学版),2018,10(2):199-202
 CHEN Longlong, WANG Bo, YUAN Ling. A neural network-based method for fault diagnosis of power transformer[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2018,10(2):199-202
- [7] Eccles J C, Ito M, Szentágothai J. The cerebellum as a neuronal machine [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1967. DOI: 10.1007/978-3-662-13147-3
- [8] Wu F X. Stability and bifurcation of ring-structured genetic regulatory networks with time delays [J]. IEEE Transactions on Circuits and Systems I (Regular Papers), 2012, 59(6):1312-1320
- [9] 郭上江.环状神经网络模型的稳定性与分岔分析[D]. 长沙:湖南大学,2004 GUO Shangjiang.Stability and bifurcation in a ring neural network[D].Changsha:Hunan University,2004
- [10] Hu H J, Huang L H. Stability and Hopf bifurcation analysis on a ring of four neurons with delays[J].Applied Mathematics and Computation, 2009, 213(2):587-599
- [11] Cai T Y, Zhang H G, Yang F S. Simplified frequency method for stability and bifurcation of delayed neural networks in ring structure [J]. Neurocomputing, 2013, 121:

416-422

- [12] Huang C D, Cao J D, Xiao M, et al. Effects of time delays on stability and Hopf bifurcation in a fractional ringstructured network with arbitrary neurons [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57:1-13
- [13] Cheng Z S,Xie K H, Wang T S, et al. Stability and Hopf bifurcation of three-triangle neural networks with delays [J].Neurocomputing, 2018, 322:206-215
- [14] Li T, Tang X L, Qian W, et al. Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks [J]. Applied Mathematics and Computation, 2019, 347:449-463
- [15] Tian X H, Xu R. Stability and hopf bifurcation of time fractional Cohen-Grossberg neural networks with diffusion and time delays in leakage terms [J]. Neural Processing Letters, 2017, 45(2):593-614
- [16] Li L, Wang Z, Li Y X, et al. Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays[J]. Applied Mathematics and Computation, 2018, 330:152-169
- [17] 胡寿松.自动控制原理[M].6版.北京:科学出版 社,2013
 HU Shousong.Automatic control theory[M].6th ed.Beijing:Science Press,2013
- [18] Ruan S G, Wei J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays [J]. Dynamics of Continuous Discrete and Impulsive Systems Series A (Mathematical Analysis), 2003, 10:863-874

Stability and Hopf bifurcation of asymmetric double-ring structured neural network

ZHOU Shuai¹ XIAO Min¹ XING Ruitao¹ ZHANG Yuezhong¹ CHENG Zunshui²

College of Automation & Collgeg of Artifical Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210003
 School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061

Abstract Ring structures are widely used in neural networks, and previous research with respect to neural dynamic bifurcation were confined to models with single-ring structure.Notably, neural networks are composed of thousands of neurons coupled together, and these structures are so complex that they cannot be accurately described through only a single-ring structure, and therefore is more practical for investigating neural network models with multiple ring topology. In this paper, an asymmetric model with double-ring neural structure is proposed, and the stability and Hopf bifurcation of the model are investigated. Numerical simulations are subsequently actualized to corroborate the theoretical results.

Key words neural network; Hopf bifurcation; discrete delay; ring network

452