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On the distribution of zeros of a third-degree exponential
polynomial with applications to delayed biological systems
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Abstract We consider the distribution of roots to a general third-order exponential polynomial equation and give
detailed conditions about when all roots lie on the left half plane,a pair of roots cross the imaginary axis and enter
the right half plane.These results can be used to discuss the local stability and Hopf bifurcation of three-dimensional
biological systems with delay. We apply our results to the three-species delayed food chain models, delayed models

for the control of testosterone secretion,delayed models of within-host HIV infection of CD4+T-cells, glucose-insulin

systems with delay,and tumor-immune system interaction models with delay.

Key words

0 Introduction

In order to study the nonlinear dynamics of a de-
layed differential system, it is crucial to discuss the dis-
tribution of zeros of the ( transcendental ) exponential
polynomial associated to the characteristic equation of
the linearized system at a given equilibrium ( Bellman
and Cooke''").An equilibrium of a delayed differential
system is absolutely stable if all roots of the correspond-
ing exponential polynomial equation have negative real
parts for all delay values; it is conditionally stable if all
roots of the corresponding exponential polynomial equa-
tion have negative real parts for some delay values;and
it is unstable if at least one root of the corresponding
exponential polynomial equation has positive real part
for any positive delay value.

The distribution of roots to general exponential pol-
ynomial equations has been extensively studied in the
literature, see, for example, Avellar and Hale'?' |
Baptistini and T4boas"*' , Bellman and Cooke''’ |, Brau-
er' Chin"', Cooke and Grossman'® , Cooke and van
den Driessche'”), Hale and Verduyn Lunel'®
Hayes[g] , Liao'"™, Ruan and Wei'"!', and the

references cited therein. Consider the following nth-

’

’

order exponential polynomial

- M\

P(/\’e Tl’,,,,e T )_
A0 AT et L 4

[p A eeap L Ap, ) Te M et

delayed differential equations ;stability ; bifurcation ; transcendental equation ;biological systems

[p{™ A etp) Apl™ e (1)
where 7,=0(i=1,2,---,m) and p_;">(i=0,1,-~-,m;
j=1,2,--,n) are constants. The following result was
proved in[ 11].

Lemma 1

As (7,,7,,,T,) vary,the sum of

the orders of the zeros of P(A,e™™", -

,e ™) in the
open right half plane can change only if a zero appears
on or crosses the imaginary axis.

In this paper,we first apply Lemma 1 to study the
distribution of roots to the following third-degree expo-
nential polynomial equation

AN ta XV +a,d+a;+(b A2 +b,A+by) e =0.  (2)
Then we apply the results to discuss the stability and
bifurcation of several three-dimensional biological
systems with delay.

Notice that if =0, equation (2) reduces to the
third-order polynomial equation

/\3+(a1+b1)/\2+(a2+b2)/\+(a3+b3)=O. (3)

1 Distribution of zeros of the third-degree
exponential polynomial

By the Routh-Hurwitz criterion, it follows that all
eigenvalues of equation (3) have negative real parts if
and only if
a,+b,>0,a,+b,>0,(a,+b,) (a,+b,) =(a;+b;)>0. (4)

Let A(7)=a(7) ziw(7) denote the roots of the

third-order exponential polynomial equation ( 2 ).



FA1ER 25 2 2E 20 (IR ,2017,9(4) :381-390

Journal of Nanjing University of Information Science and Technology ( Natural Science Edition) ,2017,9(4) :381-390 383

Firstly, we assume that the conditions in (4) are
satisfied so that all roots of the third-order exponential
polynomial equation (2) when 7=0 (that is equation
(3) have negative real parts,a(0) <0).By continuity,
if 7>0 is sufficiently small we still have o(7) <0.Now
we consider three possibilities; ( 1 ) a(7) <0 for all
values of 7 (so that all roots lie on the left half plane) ;
(i) a(71,)=0 for certain value 7,>0 (so that the
roots appear on the imaginary axis,i.e., ziw (7, ) are
purely imaginary roots) ; (iil) iw(7,) for 7=7,(s0
that the roots cross the imaginary axis and enter the
right half plane).

Note that if iw(w>0) is a root of equation (2) if
and only if
—iw’ —a,w tia,wta,+

(=b,w’+ib,w+b,) (cos( wr) —isin(wr) )= 0. (5)
Separating the real and imaginary parts,we have
a0 —a;=(=b,w +by) cos(wr) +h,wsin(wr) ,
o' —a,0=b,wcos(wr) —(—b,w +b;) sin(wr). (6)
Adding up the squares of both equations,we obtain
o’+(ai-b-2a,) '+

(a5-b3-2a,a;+2b,by) 0’ +(ai—b3)= 0. (7)
Let

z=w’, p=a,-bj-2a,,
g=ai-b:-2a,a,+2b,b;, r=ai-b. (8)
Then equation (7) becomes

h(z)=2z +pz +qz+r=0. (9)
Clearly,h (0) =r<0, and Zlirgh(z) = o . Hence, there
exists a z, € (0,9 ) so that h(z,)=0,and we have the
following lemma.

Lemma 2 If r<0,then equation (9) has at least
one positive root.

Lemma 3 If r=0,then the necessary condition
for equation (9) to have positive real roots is

p*=3¢=0.
Proof.From (9) we have

an(z)

(10)

=37 +2pz+q.

Set
32 +2pz+q =0. (11)

Then the roots of equation (11) can be expressed as

_—pxVp’-3¢

212 3 (12)

If p>~3¢<0,then (11) does not have real roots.So the
function h (z) is monotone increasing in z. It follows
from h(0)=r=0 that equation (9) has no positive real

roots.This completes the proof.

Clearly,if p’=3¢ =0, then z, = is the

-p+V/p’ =3¢
3

local minimum of h (z). Thus, we have the following
lemma.

Lemma 4 If r = 0, then equation (9) has
positive roots if and only if z,>0 and h(z, ) <O.

Proof. The sufficiency is obvious. We only need to
prove the necessity. Otherwise, we assume that either
2, <0 or z,>0 and h(z,)>0.If z, <0,since h(z) is in-
creasing for z=z, and h(0)=r=0,it follows that h(z)

has no positive real zeros.If z,>0 and h(z,) >0, since

/ 2

2z, =w is the local maximum value, it follows
that h(z,) <h(z,).Hence,by h(0)=r=0, we know
that A(z) does not have positive real zeros.This com-
pletes the proof.

Summarizing the above discussion,we have the fol-
lowing proposition.

Proposition 1 We have the following statements

(i) If r<0,then equation (9) has at least one
positive root.

(ii) Ifr=0 and p*-3¢<0, then equation (9) has
no positive roots.

(iii) If r=0,then equation (9) has positive roots
1
if and only if z, :?( —p+/p°=3¢ ) >0 and h(z,) <O.

Suppose that equation (9) has positive roots. With-
out loss of generality, we assume that it has three
positive roots, denoted by z,, z,, and z,, respectively.

Then equation (7) has three positive roots , say

W) =\/3) ,Wy T /3y ,W3T4/33.

Let
| W, +a, 0, —,w,—a
Tff):*[arcsin( U e 3) +2(j—1)71'] s
w, 2b,w,
k=1,2,3; j=0,1,--.

Then =+ iw, is a pair of purely imaginary roots of
equation (2) with 7'=7',f_j) ,k=1,2,3;=0,1,---.Clear-

ly,
limr,” =0 ,k=1,2,3.

Jjoo
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Thus, we can define

— )

TNy a3 i1 {T/r] b
Proposition 2

(4) are satisfied.

(a) If r=0 and p> -3¢ <0, then all roots of

— o)
TO - Tk(]

(13)

Suppose that the conditions in

Wy =Wy,

equation (2) have negative real parts for all 7=0.

1
(b) If r<0 or r=0,-p+/p°=3¢>0 and h | —( -
3

p+/p°=3q) )<O,then all roots of equation (2) have

negative real parts when 7€ [0,7,).
Proof.If r=0 and p2 -3¢<0, Proposition 1 ( ij )

shows that equation (2) has no roots with zero real part
1
for all 7=0.When r<0 or r=0,z, =?( —-p+/p*=3¢)>

0 and h(z, ) <0, Proposition 1 ( | ) and (jii) imply
that when 7# 7 | k=1,2,3,j=1,equation (2) has no
roots with zero real part and 7, is the minimum value of
7 so that equation (2) has purely imaginary roots. Ap-
plying 1,we obtain the conclusion.

Let A(7)=a(7) +iw(71) be the root of equation
(2) satisfying

a(7,)=0,

In order to guarantee that =+ iw, are simple purely

(1) =

imaginary roots of equation (2) with 7=7, and A (7)
satisfies the transversality condition, we assume that
h'(w;) #0.Hence ,we have the following lemma.
Lemma 5 Suppose that ' (w;) #0.1f 7=17,,
then *iw, are a pair of simple purely imaginary roots of
equation (2).Moreover, if the conditions of Proposition
2 (b) are satisfied ,then
dReA (7,)
T >0
Proof. One can show that iw, is simple.
Differentiating both sides of equation (2) with respect

to T gives
da(r)
dr

A(b A +b, A +by) e ™
3N +2a, A +a,+[ 2b, A +b,—7 (b, A*+b,A+b,) Je

Denote

o (14)

A= [ _3w(2)+az+( Toblw(2)+bz_70b3 ) cos( ono) +
(2b,w,=7byw, ) sin(w,7,) ]2"'

[2‘110)0_( Toblw(2)+b2_70b3 ) sin( ono) +

(2b,w,~Tobrw, ) cos(wyTy) 17
Letting r=7y(i.e.,a(7,)=0,w (7)) = w,) In
equation (14) ,separating the real and imaginary parts
and using equation (6) and the definition of h(z) ,we
obtain that

2
dReA (O )
=—h' #0.
d’T T=T0 A ( @o )
dRea
If 220 for 7<7, and close to 7,,then equation
T

(2) has aroot A(7)=a(A)+iw(A) satisfying a(A) >
0, which contradicts Proposition 2. This completes the
proof.

By Proposition 2 and Lemma 5, we have the fol-
lowing theorem.

Theorem 1 Let p,q,r be defined by (8) and let
w, and 7, be defined by (13).Suppose that the condi-
tions in (4) are satisfied.Then

(1) If r=0 and p*-3¢<0,then all roots of equa-

tion (2) have negative real parts for all 7=0.
(i) ¥r<O0orr=0,-p++/p°-3¢ >0 and
1

h (?( -p+v/p*=3q) ) <0, then all roots of equation

(2) have negative real parts when 7 [0,7,).
(iii) If the conditions of ( ii ) are satisfied, T =
7o,and b’ (wg) # 0, then +iw, are a pair of simple

purely imaginary roots of equation (2) and all other

d
roots have negative real paﬁs.Moreover,d*Re)\ (719)>0.
T

2 Applications to delayed biological systems

In this section we apply the results in the above
section to discuss the stability and bifurcation in several
described by  three

delayed biological — systems

differential equations.

2.1 Three-species food chain models with delay
Let x(t),y(t),and z(t) denote the densities of
the bottom prey,intermediate predator,and top predator
populations at time ¢, respectively.It is assumed that the
intermediate predator y(t) predates on the bottom prey
x(t) and is predated by the top predator z(¢) as well.
Consider the three-species food chain model with delay

( Freedman and Ruan''?) .
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dx with a;=b,=0 and let w, and 7, be defined by (13).
—-=xg(x,K) —yp(x), _
dt Then by Theorem 1,we have the following results.

d oge

d*y=y[—r+cp(x)]—zq(y) ’ (15) Proposition 3  Assume that m <0, m,, <0.Then
t the positive equilibrium E* of system (15) is asymptot-

%:z[ —s+dg(y(1-1)) ] ically stable if 7€ [0,7,) and unstable if r>7,.A Hopf

de

With initial values x(0)=x,=0,y(0)=¢(0) =0,0
[-7,0],2(0)=2,=0,in which ¢(#) is continuous for
#e[-7,0],7=0 is a constant which may be regarded
as a delay due to gestation.( ] ) g(«,K) describes the
growth rate of the prey in the absence of predation and
satisfies the assumptions that for any x>0 and K>0,
2(0,K)>0,¢(K,K)=0,g,(x,K) <0,g,(K,K) <0, g,
(x,K)>0,g,(x,K)>0.The Logistic growth g(x,K)=

x
r(l—f) is a prototype and satisfies all these assump-

tions. ( i ) p (x) denotes the predator functional
response of ¥y on x and satisfies the assumption that
p(0)=0,p(x)>0,p'(x)>0 for x>0.Holling-type func-
tional responses functions satisfy these conditions.
(iii) g(y) denotes the predator functional response of
z on y and satisfies similar conditions as for p(x).

Let E*=(x",y" ,z") denote an interior equilib-
rium of system (15).The linearized system at E* takes

the following form

dX
=my X(1)+m,Y (1),

=my X (1) +my, Y(1) +myZ (1) , (16)

dt
d7Y
dt
dz
a:mszz( t=7),

where
my =g(x" K)+x g (27 ,K) =y "p'(y"),
m=—p(x")<0, my=cy"p'(x")>0,

my=ep(x”)=[r+z7q" (y") ], myu=—q(y")<0,
my,=dz"q' (y")>0.

The characteristic equation of the linearized system

(16) is

AN +a, A +a, A+ (b, +by) e =0, (17)
where
a,==(my+my), ay=m;my—m;,m, ,

by=myumy,<0,  by=-—mmyms,.
One can verify that all conditions in (4) are satis-

fied if m,, <0, m,, <0.Let p,q,r be defined by (8)

biurcation occurs at E* when 7=7,.
Remark 1
term of the bottom prey,i.e.,g(x(i=7),K) ,or in the

If a time delay appears in the growth

functional specific growth term of the intermediate pred-
ator,i.e.,p (x(t—7)), then similar results on the

stability and bifurcation of the model can be estab-

lished.

2.2 Delayed models for the control of testosterone

secretion

The secretion of testosterone from the gonads is
stimulated by a pituitary hormone called the luteinizing
hormone (LH).The secretion of LH from the pituitary
gland is stimulated by the luteinizing hormone releasing
hormone (LHRH).This LHRH is normally secreted by
the hypothalamus and carried to the pituitary gland by
the blood.It is known that testosterone (T) has a feed-
back effect on the secretion of LH and LHRH.It is be-
lieved that each of the hormones to be cleared from the
bloodstream according to first order kinetics with LH
and T produced by their precursors according to first or-
der kinetics.There is a nonlinear negative feedback by T
on LHRH and there is a delay between production of
the hormones at one level and its effect on the
production of the hormone it stimulates simply because
of their spatial separation and the fact that the hormones
are transported by circulating blood.Smith' "' proposed
a delayed model involving the three hormones of

LHRH,LH and T and a single delay indicating that the

production of testosterone is delayed:

dR

Lopn-b),

d

Lo (R b1 (18)
dT

E:gz(L(Z_T) )=by(T),

where f is a positive monotonic decreasing function,
b,(i=1,2,3)and g;(j=1,2) are positive monotonic in-

creasing functions, and 7 is the delay associated with
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the blood circulation time in the body,i.e. ,the time that
LH requires to travel through the bloodstream to reach
its site of action at the gonads.

Let E*=(R",L",T") denote the positive steady
state of system ( 18).Then the linearized system of
(18) at E” is

e ob (R X4 (1) 2,

dY * *

Ezgl'(R )X=b,(L7)Y, (19)
dz

& =gy (L) Y(t=1)=by(T")Z.

The associated characteristic equation of system (19) is

AN +a, AV +a, A +a,+he ™ =0, (20)
where

a,=b . (R")+b,(L")+b,(T")>0,

ay=b, (R" )by (L™ )+b, (L™ )by (T™ )+

b, (R" )by, (T")>0,

ay=b,(R" )b, (L" )by, (T")>0,

by==(T")g (R")gy(L")>0.
We have
p=ai=2a,=[b,(R™) J*+[ by (L") I*+[b5(T7) ]7,
g=a;=2a,a;=[b,(R") J*[by(L7) "+

[op(R™) PLby(T7) 124+[by (L") 1P [0:(T7) 17,
r=a;=by=[b,(R") 1*[ by (L") I*[b,(T") ]~

LFCT) g (R™) 1P [ (L7) )%

Applying Theorem 1,we have the following results
(Ruan and Wei'™)).

Proposition 4 Let w, and 7, be defined as in
(13) and h(z) be defined as in (9).Suppose that a,a,—
a;—b,>0.

(1) If r=0 and p’-3¢<0, then the steady state
(R*,L",T") of system (18) is absolutely stable (i.
e. ,asymptotically stable for all 7=0).

(i) If r<0 or r=0,-p++/p°-3¢g >0 and
1
h (?( —p+/p*=3q) )<0,then the steady state (R™,

L",T") of system (18) is asymptotically stable for
rel[0,7,).

(iii) If the conditions of (ii) are satisfied,7=17,,
and h'(w;) #0,then system (18) exhibits a Hopf bi-
furcation at (R* ,L* ,T").

2.3 Delayed models of within-host HIV infection
of CD4" T-cells

HIV CD4" T

lymphocytes , which are the most abundant white blood

targets, among others, the
cells of the immune system ( referred to as helper T
cells or CD4" T-cells ). When HIV enters the body, it
targets all cells with CD4" receptors, including the
CD4" T-cells. The gpl120 protein on the viral particle
binds to the CD4" receptors on the CD4" T-cell and in-
jects its core.After an intracellular delay associated with
reverse transcription , integration, and the production of
capsid proteins, the infected cell releases hundreds of
virions that can infect other CD4" T-cells.

Let T(t) ,I(t), and V() represent the concen-
tration of healthy CD4" T-cells, the concentration of in-
fected CD4" T-cells, and the concentration of free HIV
at time t, respectively. Consider the following delayed
model of within-host HIV infection of CD4" T-cells
( Culshaw and Ruan'™") .

dT _T(t)+](t)
)

=S T +T (D) (1 -k, T(1) V(1)

d max

d/

5:k,1T(I_T)V(t—T>—,U,I[(t>, (21)
dV

5=Nm1(t)-le(t)V(w—mV(t)

under the initial values

T(9)=T,, I1(0)=0, V(6)=V,, 6e[-7,0].

The parameter s is the source of CD4" T-cells from
precursors ,u; is the natural death rate of CD4" T-cells,
r is their growth rate (thus,r>u, in general) ,and T
is their carrying capacity.k, represents the rate of infec-
tion of T-cells with free virus and so is given as a loss
term for both healthy cells and virus,since they are both
lost by binding to one another, and is the source term
for infected cells.k’| is the rate at which infected cells
become actively infected (the ratio k',/k, is the propor-
tion of T-cells which ever become actively infected ) .u,
is a blanket death term for infected cells, to reflect the
assumption that we do not initially know whether the
cells die naturally or by bursting. In addition,u, is the
lytic death rate for infected cells.Since N viral particles
are released by each lysing cell, this term is multiplied
by the parameter N to represent the source for free virus

(assuming a one-time initial infection).u, is the loss
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rate of virus. The positive constant 7 represents the
length of the intracellular delay in days. System (21)
has a (positive) infected steady state E* = (T ,I",
V*) ,where

T = Myl
k,INﬂb_klﬂl’
k'\T"V*

I"=———,

My

o L ) T ) T (1))
T* [k,er* +kllu’leax] ‘

Then the linearized system of (21) at E" is given by
dX 2T +rl ™

T*

= Y(0) -k, T Z(1),

Tmax
E:k,IV XCt=7)—w,Y()+k, T Z(it-7), (22)
dz . .
Ez_lﬁv X(t)+Nw, Y(t) =k, T™ +uy) Z(1).

The characteristic equation of system (22) is given by
AN +a, M +a,dta,+(byA+by) e =0, (23)
where
a, =,y +k, T"+M,
ay=M (kT +ptpy )+ (e +h T )‘ki v,
ay=Mu,(py+k,T" >_M/k% v,
b2=k’,T*(rTV—N,u,,) ,

max

T

b3=k'lT*(k1N,u,,)V*+ —MN,u,,,) .

max

By Theorem 1, we have the following results
( Culshaw and Ruan'™).
Proposition 5 Suppose that

a,>0, a;+b,>0, a,(a,+b,)—=(a;+b;)>0.
Define
p=ai-2a,, g¢=a;-b;-2a,a;, r=a;-b;.

(i) Hr=0 and ¢>0, then the infected steady
state £~ of model (21) is absolutely stable; that is, as-
ymptotically stable for all 7=0.

(ii ) If either r<0 or r=0 and ¢<0, then the in-
fected steady state E* of model (21) is asymptotically
stable when 7<7, and unstable when 7>7,, where

1 bzwg+(a1b3—a2b2)wé—a3b3

T, =——arccos
2,72 2
Wy b3+b2 W

When 7=1,,a Hopf bifurcation occurs at E*.

Remark 2 Proposition 5 indicates that the HIV
infection model (21) could exhibit Hopf bifurcation at
delay ( and

oscillations occur in the concentrations of the health and

certain value of the thus periodic
infected CD4" T-cells) if the parameters satisfy the
conditions in ( ii ).However, there are no clinical data
showing that the parameter values satisfy either
conditions in ( ij ).Indeed, there are no data showing
that the concentrations of the healthy and infected CD4"

T-cells are periodically oscillatory.

2.4 Delayed models for glucose-insulin system

Diabetes mellitus is a metabolic syndrome charac-
terized by chronic hyperglycemia and relative
deficiencies in insulin secretion.Plasma glucose concen-
tration in humans normally lies within a range of 70—
100 mg/dL which is vital to life. Blood glucose levels
which are too high will result in hyperglycemia. These
increased glucose levels are signs of diabetes mellitus
and can lead to symptoms such as increased polyuria
among others.Conversely , blood glucose levels which are
too low can lead to hypoglycemia. Low blood glucose
levels below 45-55 mg/100 mL for a period of time can
lead to an impairment of brain function, tremors, con-
vulsions , and even death.

One of the intriguing phenomena in human’s
insulin secretion is ultradian oscillations with period of
about 100—200 min.Two basic hypotheses are employed
for the description of this phenomenon. The first
presumes the existence of an ultradian pancreatic pace-
maker producing periodic excitations with periodicity of
about 2 hours.The other approach tries to explain ultra-
dian oscillations by specific behavior of a nonlinear sys-
tem.

To describe the dynamics of the insulin-glucose in-
teraction, let x (t) and y (t) represent the amount
(mU) of insulin in plasma and insulin in interstitial
fluid at time ¢, respectively, and glucose space is
treated as unique with glucose amount z () (mg).
Denote by ¢, =x/V,(wU/mL) ,c, =y/V,(pU/mL) ,c.=
0.1z/V, ( mg/dL )

glucose,in which V, is volume of plasma,V, is volume

concentrations of insulin and

of interstitial liquid, and V; is volume of the glucose
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compartment ( L). Drozdov and Khanina'®' proposed

the following delayed insulin-glucose model ;

(SO () ror o,

dy E E 1
—=— - —+— 24
el frer N EOR (24)
dz a(t-1)\ 0.1z(1) , 1y(2)
- = + L_
A fx( Vv, ) v, Jz( Vz) (L=py) ,
where
210
fl(c)_1+exp(5.21—0.03cz)
is the insulin secretion rate,
9
file,)= +0.4

1+exp[ 7. 76-1. T2In(14V,/ (ET, ) )e, ) ]

is the rate of glucose utilization , and

160
S )= (02967, 5)

is the glucose production rate; E, T,, T, ( 1/min) are

parameters, L (mg/min) is the rate of delivery, p, is
the utilization constant,and 7 is a delay in glucose pro-
duction.

Let E* =(x" ,y",z") be the positive equilibrium
of system (24).The linearized system of (24) at E* =
(x",y",z") takes the following form:

X
—=a, X(1)+a,Y(1)+aZ(1),

ds
dY
azaﬂX(t)lezY(t) > (25)
dz
Ezbalx( t=7)+ay,Y(1) +ay, Z(1),
where

E 1 E

an:_(vl"'f), alZZVza
_0.1df, /0. 12"
T Vs dcz( Vv, ) ’
E E 1

azlzvla 022:_(V2+T72) s
p o Ldhxt _ 0.1z dfy T
31_V,dcx( V,) AT dcy( Vz) :

0.1 (y°
33 :_73][2(72) .
The characteristic equation of the linearized system
(25) is

AN ta, AV +a,A+ay,+(bA+by) e =0, (26)

where
a;=—(ay +ay+ay),
Ay =0a,,0y)+a, a3 1tana;=a0,a,,
A3 = =0 Ay =0y A a3, by=a;bs,

(26)

By Theorem 1, we can similarly establish the sta-

by==aya;bsy,.

bility and bifurcation results for system (24) ( see

Drozdov and Khanina''®').

2.5 Delayed models for tumor-immune system inter-
action

The cell cycle is the process between two cell divi-
sions (or mitosis) and can be divided into 4 phases:
resting phase (or gap period) G, , synthetic period or S
phase (where the replication of DNA occurs) , post-syn-
thetic phase G,( cells complete the DNA replication and
enter another gap period ), and mitosis M ( cells
segregate the duplicated sets of chromosomes between
daughter cells).There are many facts that prevent the
cell from completing the cycle if it detects an abnormal-
ity. A cancerous cell does not necessarily divide more
rapidly than their normal counterparts, but it loses the
ability to regulate the cell cycle, thus proliferation of
these cells is not controlled. Once mitosis is completed
each daughter cell can enter the cycle again or shift into
a quiescent phase G, during which cells do not divide
for long periods.

To present a competition model of tumor growth
that includes the immune system response, Villasana
and Radunskaya'”' excluded the quiescent phase, con-
sidered three populations; immune system, population
of tumor cells during interphase and population of tumor
during mitosis, and used a time delay to take into
account the phases of the cell cycle.Let T,(t) denote
the population of tumor cells during interphase at time
t, where interphase is the pre-mitotic phase, namely
G,+S+G,.Let T),(t) be the tumor population during mi-
tosis at time ¢,/(¢) be the immune system population at
time . The governing equations for the system are;
dT,

EZZ(MTM(I)_(Cll(l)+dz)T1(z)_asT1<t_T> ,
dr

dithasTK t=1)=d, T\ (t) —a, T, (t)—c; T, () I(1),
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£=k+p]<t> (T,(1)+Ty(1))"

di (T +T,(1))"
e, Ty(t)I(t)=d, (1)

with continuous initial data
T(0)=¢(0), T,(0)=¢,(0),
1(0)=¢5(0), 6el-7,0].

The terms d,T,,d;T,, and d,I represent proportions

e, T, (1) I(t) -

(27)

of natural cell death or apoptosis,a, and as represent the
different rates at which cells cycle or reproduce, the ¢,
terms represent losses from encounters of tumor cells
pl(t) (T,(1)+T,(1))"

at(T,(1)+T,(2))"

describes the nonlinear growth of the immune population

with immune cells and the term

due to stimulus by the tumor cells.The parameters p,a,
and n depend on the type of tumor being considered and
the health of the immune system, specifically its ability
to produce certain cytokines. In the absence of tumor
cells,the immune cells grow at a constant source rate .
The tumor cells reside in interphase for a certain period
of time 7 before continuing in the cycle to M. Assuming
that cells reside in interphase 7 units of time,then the
cells that enter mitosis at time ¢ are those cells that en-
tered interphase 7 units of time before.

Let E*=(T/,T, ,I") denote the positive equi-
librium of system (27).The characteristic equation of
the linearized system of (26) at E” can be written as

AN +a, AV +a, A +a,+(b A7 +b,A+by) e =0. (28)
where

a,=P+Q+R, a,=PQ-c, T, W+tR(P+Q)+Z,

a;=PQR-c,T,,(WR-2Za,)+PZ,

b,=as, b,=as(P-0-2a,),

by=as(PQ-c;Ty W=2a,Q+c, T/ W),
in which

P=d,+a,+c, 1",

P( T]* +T/; ) ’

=c, T +c, T +d ———,
Q=c,T; +c, Ty +d, a+(T,*+f;)3

R=d,+c, 1",
 3alt (T +T)?
W=c4]* *1 *MS -
Lat(T/ +Ty )" ]
3l (T AT,
Z=c,1" S

Lat (T +75)° )"
By Theorem 1,once again we can establish the sta-

bility and bifurcation results for system (27) (see Vil-

lasana and Radunskaya''').
3 Discussion

We have studied the distribution of zeros to a gen-
eral third-order exponential polynomial and provided
detailed conditions about when all zeros lie on the left
half plane, cross the imaginary axis and enter the right
half plane.Since the characteristic equation of the line-
arized system with delay at a positive equilibrium can
be written as a third-order exponential polynomial equa-
tion, our results can be used to discuss the local
stability and Hopf bifurcation of three-dimensional bio-
logical systems with delay. As examples, we applied our
results to the three-species delayed food chain models,
delayed models for the control of testosterone secretion,
delayed models of within-host HIV infection of CD4" T-
cells, glucose-insulin systems with delay,and tumor-im-
mune system interaction models with delay. Many other
delayed biological systems ( see Batzela and Kappel '’
and Makroglou et al.'"’  for example).

If multiple delays appear in the model, techniques
in Ruan and Wei''" can be used to treat multiple delay
systems. For example, for the third-order exponential
equation with two delays

N +a, AV +a, A +a,+(b A +byA+by ) e M+

(e, A7 +e, +ey) e =0,
the idea is to consider the case when 7, =0 first and ob-
tain a critical value 7, ,: all roots have negative real
parts when 7, € [0,7, ;) and at least one root has posi-
tive real part when 7,>7, ;. Then fix 7, =7 in[0,
Ti0) , repeat the analysis for 7,, and find a critical
value 7, ((7, ) so that all roots have negative real parts
when 7, € [0,7, (7)) and at least one root has posi-
tive real part when 7, =7, ,(7, ).Summarizing these
results, we know that all roots of the equation with two
delays have negative real parts for (7,,7,) € [0,7,,)X
[0, 7,0(7, )).If model parameters depend on the

]

delay, then techniques in Beretta and Kuang' ™' can be

combined with the methods employed in this paper.
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