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Abstract This paper provides an overview of recent advances of theory on stochastic stabilization and destabiliza-
tion.The paper reviews a general theory on stochastic stabilization and destabilization of continuous-time systems and
then illustrates the developments of theory on stabilization by noise with the applications and generalizations of this

theory from four aspects. Moreover, this paper reviews some recent development of stochastic stabilization for

discrete-time systems.
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0 Introduction

A real-world system is usually subject to noise/
disturbance ,which could be the cause of poor perform-
ance or even instability of the system.For a long time,
noise has been a challenging problem that has to be
dealt with in engineering (see [ 1-6] among others).
Traditionally , noise is treated as disturbance in the engi-
neering literature (see,e.g.,[ 1-2,6]and the references
therein ) and , therefore ,an effective way for hanling it is
to make the systems robust so that the controlled
systems can counteract the effect of noise to keep good
performance and/or stability. One can easily find the
huge amounts of literature on this research. But people
also found a phenomenum that a system, which could be
unstable , is made stable by noise in several different
contexts( see[ 7-141).

It is now well known that noise can not only be
used to destabilize a given stable system but also be
used to stabilize a given unstable system or to make a
system even more stable. The literature on stabilization
and destabilization by noise is extensive (see[ 7, 10-
12,15-24] and the reference therein).Stabilization by
deterministic periodic “noise” , e. g., deterministic vi-
brational control, was investigated a great deal in the
references( see,e.g.,[9,11-12,14,25].But the study
in the case of random noise, viz, stochastic stabilization
was initiated by Has’'minskii who employed two white
noise sources to stabilize a differential equation''’.

Later, the problems of stabilization and destabilization

almost sure stability ; continuous-time systems ; discrete-time systems ; stabilization by noise ; stochastic

by random noise were studied in many works.This paper
reviews the current development of theory on stochastic
stabilization and destabilization. Especially interesting
are the cases when the deterministic system is unstable
while, after adding ( multiplicative ) noise, the corre-
sponding stochastic system is stable (i.e.an unstable
system is made stable by noise).This is very helpful in
analysis and design of control systems (see,e.g.,[26-
28 1) .So this review will focus more on the development
of theory for stabilization by noise.

The rest of the paper is organized as follows.
Section 1 reviews a general theory on stochastic stabili-
zation and destabilization proposed in [ 20] and then
developed in [ 15] and [21].In Section 2,the applica-
tions and developments of theory on stabilization by
noise is reviewed from the following aspects (with a
specified example as well as other examples for each) ;
1) applications of the theory,2) extension of control
strategies/ methods/notions to stochastic stabilization,
3) generalizations to many other systems,and 4) using
different types of noise.Section 3 reviews some novel re-
sults for stochastic stabilization of discrete-time systems

proposed in [ 28].Conclusions are given in Section 4.

1 A general theory on stochastic stabilization
and destabilization

As is well known, noise can not only be used to
destabilize a given stable system but also be used to sta-

bilize a given unstable system or to make a system even
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more stable. Since the study in the case of random

noise, viz, stochastic stabilization, initiated by
Has’minskii who employed two white noise sources to
stabilize a differential equation''’ | the problems of sta-
bilization and destabilization by random noise have been
studied in many works, see,e.g.,[7-8,15,17,20-24,
26, 29-36 ]. Among these results, Arnold et al.l”’
showed ,in particular, that the system x(2)=Ax(t) can
be stabilized by zero-mean stationary parameter noise if
and only if the trace of matrix a is negative,i.e.,trace
(A)<0.And then the behavior of Lyapunov exponent of
linear stochastic systems was studied in[ 22-23 ].Espe-
cially interesting are the cases when the top Lyapunov
exponent of the deterministic system is greater than zero
while the top Lyapunov exponent of the corresponding
stochastic system is smaller than zero (i.e.an unstable
system is made stable by noise).On the other hand,
Scheutzow' > provided some examples on stabilization
and destabilization in the plane,and Mao'®’ developed
a general theory on stabilization and destabilization by
Brownian motion.But the conditions in [ 20] excluded
many nonlinear systems. Appleby et al.'"'lifted the re-
strictions and extended the theory to a general class of
nonlinear systems. Recently , Huang'*" further developed
the theory and revealed more fundamental principles for
stochastic stabilization and destabilization.

According to this general theory on stochastic sta-

[15,20-21] li
, a nonlinear

bilization and destabilization
ordinary differential equation ( ODE)
2 =fx(t),t) t>0;x(0)=x, € R'\{O} (1)
could be stabilized ( resp.destabilized) using Brownian
motion.More precisely,one could find some appropriate
function : R" X R, — R"™" such that the equilibrium so-
lution of stochastic differential equation ( SDE)

do(2) = f(x(2) )dt + g(x(2) )dw(t) ¢ > 0;

x(0) =x, € R"\{0} (2)

is almost surely (a.s.) stable (resp.unstable) , where
w(t) =[w, (1)
sional Brownian motion; both /;R" X R,— R" and g
R" xR,— R"™ obey

f(0,6)=0 and g(0,t)=0 (3)

for all =0 and satisfy the local Lipschitz continuous

w, (1) ]T,t = 0, is an m-dimen-

condition , that is, for any integer k=1, there is L, >0

el A BEPLIFUE 5 R ARE A
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such that
e, t) ~f(y, ) TV 1g(x) =g (y) I <L, (la=yl)  (4)
for all (x,y) e R" x R" with Ix|V |yl <k and :=0.
Obviously , both systems (1) and (2) admit the equi-
librium solution x ()= 0 for all =0 when initial condi-
tion x, = 0. Therefore, the noise perturbation preserves
the equilibrium of the system (1).

By virtue of the local Lipschitz continuous
condition (4 ) , there is a unique continuous adapted

process x (see,e.g.,[5,37])such that
t N1y
x(t A7) =xg + [ flx(s))ds +
0

LA\
)

where 7, =inf{#>0; |x(t;%,) | =k} .Here set inf g= oo

Ye(x(s))dw(s), 120 as.  (5)

as usual.The equation (2) has a global solution if the

explosion time 7, defined by

e

X0 — 1 —
TeO - llm Tk -

inf{z :wO; | x(t52) | & [0,00) 1. (6)

obeys 7,= o a.s. In this work, it is important to show

T

that solutions to equation (2) cannot reach zero in
finite time,i.e., P( {6, < = | ) =0,where the stopping
time 6, is defined by

0, =6, =inf{t > 0: 1 x(t;x,) | =0}. (7)
The existing results (see,e.g.,[15] and [5]) give
7,<60, and ,=x a.s.For the existence and uniqueness
of global solutions of SDE (2) ,one has [ 21] ( Proposi-
tion 3. 1)

Proposition 1
A:R" — R such that

1

| x

Suppose that there is a function

|4[| x 720" f(w,t) +

L g(x,t) 13) =21 x'g(x,0) 17] < A(x). (8)
for all x##0 and ¢=0,where | - | is the Euclidean norm
of a vector and its induced norm of a matrix; | - |, is
the Frobenius norm of a matrix; A ( + ) is an upper-
bounded continuou function,i.e.,there is a constant H,
such that A (x) <H, for allx € R". Then there exists a
unique continuous adapted process x, which is a
solution of (2) such that 7,=6,=o a.s.

Letting A(x) =0 for all x € R" leads to [ 15]
( Proposition 7).
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1.1 Stochastic stabilization of continuous-time sys-
tems

In [20],it is assumed that function f;R" X R, —
R" satisfies a global linear bound

l flx,t) <Kl xl, VxeR,t0=0, (9)
for some K >0, and function g:R" X R,— R"™™ is
chosen to be of the form
g(x,t)=[B, B, ]x= [Bx B.x], (10)
for all ¢=0,where B,,1<k<m,are all nXn constant

matrices.So the stabilizing (resp.destabilizing) noise is

of the form

g(x,t)dw(t) =
[Bx B,x] [w,(1) w,(1)]" =
I;kawk(t)- (11)

and hence SDE (2) becomes

dw(t) =f(x(t) ,t)de + éka(t)dwk(t) ,

t >0; x(0)=x, € R"\{0}.
For SDE (12) ,one has
Theorem 1 ( see [ 20 | Theorem 3.1) Let
condition (9) hold and A>0,p=0. Assume

(12)

m

2 2
ZIkal < Alxl” and
=

Y 1 x'Bxl?=plal?, (13)
k=1

for allx € R". Then

1 1
lim supTIOgl (1) | =- (p -K-— )| as (14)

2

1
for any x, # 0.In particular, if p >K+? A, then SDE

(12) is almost surely exponentially stable.

Clearly, the global linear bound condition (9) is
restrictive. Although , under some conditions, (9) can be
weakened to a one-sided growth condition (see,e.g.,
[37]
equilibria at 0 are still excluded'”’. Appleby et al.'

and [ 38 ]), many dynamical systems with
15]
lifted the restriction and extended the theory on stochas-
tic stabilization and destabilization to the general class
of nonlinear systems (2), which satisfies conditions
(3) and (4).

Theorem 2( see[ 15 ] Theorem &)
there is € (0,1) such that

| w1222 f(x,t) +1 g(,) 12) -

Suppose that

(2-a)l x"g(x,t) 1 <0,
for all t=0 and

(15)

(16)

for every L>0 and ¢=0.Then, there exists a unique con-

g(L) 1= minLI x'g(x,t) 1 >0,

I xl =

tinuous adapted process x,which is a global solution of
SDE (2) and which obeys
limx(t) =0 a.s.

1—
To reveal the more fundamental principles for sto-

and  destabilization, Huang'*"

chastic stabilization
further developed the theory for the general class of
nonlinear systems (2).

Theorem 3 ( see [ 21 | Theorem 3. 1)
that there are functionsyu € C (R",R,;R,) andv €

C(R",R, ;nR,) such that

Suppose

| xl|4[| w1222 f(x,0) +1 g(w,t) 13) —

21 x'g(a,t) 1°] <-p(w), (17)
T 2
M < v(x). (18)
[ x|
for all 1=0 and
imf ) (19)
Ixl =B V(x)

for every 3>0, where C(R",R, ;R,) is the family of
nonnegative continuous functions w: R" XR,— R,
and C, (R",R,;R,) the family of nonnegative continu-
ous functions y : R" X R,— R, such thatu (x) > 0 for
all x # 0,0 < u(0) < o ,and, moreover, lim inf

| xl —o0

w(x) =0 if w(0)=0. Then there exists a unique con-
tinuous adapted process x,which is a global solution of
SDE (2) and which obeys

,lirg x(t) =0 a.s.

The conditions (17)—(19) in Theorem 3 exploit
the system structure and yield a more general result. It
can be observed that Theorem 2 is a special case of
Theorem 3 when u(x)/v(x) > ¢ > Ofor allx € R”
while Theorem 1 can be considered as a specialized ver-
sion withu(x)=a > 0 and b, = v(x) = b, > 0for all
x e R"

1.2 Stochastic destabilization of continuous-
time systems
Let us now turn to consider the problems of sto-

chastic destabilization ,that is,a system,even if it is sta-
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ble ,can be made unstable by noise , which has been ad-

1251 Particularly,, Mao' ™ pro-

dressed in many works'
posed a theory on how to destabilize an ODE using mul-
tiplicative noise described with Brownian motion. It
should be noticed that the multiplicative noise cannot
destabilize a scalar ODE but make it even more stable if
the ODE is a stable system (see,e.g.,[5,37]).Let
n=2 for the problems of stochastic destabilization.

In[20], an ODE that obeys the global linear
bound condition (11) can be destabilized by multiplic-
ative noise (11) for an appropriate choice of the set of
matrices B, ,1<k<m.

Theorem 4 ( see [ 20 | Theorem 4.1) Let
condition (9) hold and A>0,p=0.Assume

m

2 2
2|ka| = Al xl” and
=

m

| x'Baxl?<plal? (20)
k=1
for all x € R". Then
1 1
lim infTIOgl x(t) | = ?/\ -K-p as. (21)

for any x,70.In particular,if A>2(K+p) ,then the so-
lution 1x(z) | of SDE (12) tends to infinity almost
surely exponentially fast, i. e., SDE (12) is almost
surely exponentially unstable.

The theory was improved and extended to the gen-
eral class of nonlinear systems (2) in Appleby et al.'"’
by lifting the restrive global linear bound condition
(9).

Theorem 5( see[ 15 ] Theorem 12)
there is € (0,1) such that

| w222 f(x,0) +1 g(x,0) 13) -

(2+a)l x'g(x,0) 17 =0. (22)

for all + =0.Let x be the unique continuous adapted

Suppose that

process which is a solution of SDE (2) on [0, 7, ).
Then,x obeys
lim inf| x(z) | > 0 a.s.

Recently, Huang'”" further developed the theory
and revealed the more fundamental principle for sto-
chastic stabilization.

Theorem 6 Suppose there exist functions yu e
C(R",R,;R,) and v € C(R",R,;R,) such that

1|4[| x 720" f(x,0) +1 g(a,t) 1) —

| x

el A BEPLIFUE 5 R ARE A

HUANG Lirong, et al.Stochastic stabilization and destabilization: A survey.

21 x'g(x,t) 17] = p(x), (23)
| x'g(x,0) |7
— 0 <v(x), (24)
| x|
for all =0 and
W ACINN 0, (25)
<py(«x)

for every 8>0.Let x be the unique continuous adapted
process which is a solution of SDE(2) on [0,7,),
where 7, is defined by (6).Then,x obeys

lim sup | x(t;%,) | = a.s.

Again , conditions (23)—(25) in Theorem 6 give
more general and applicable results by exploiting the
system structure.As is observed, Theorem 5 is a speical
case of Theorem 4 when u(x)/v(x) > ¢ > 0 for all
x e R" while Theorem 6 can be considered as a version
of Theorem 6 with u(x) =a > 0 and b, = v(x) =
b, >0 for all x € R". Moreover, Theorem 6 shows that,
under these conditions, the solution x(¢) of SDE (2) is
almost surely unbounded, which is desired for the pur-

pose of stochastic destabilization.

2 Development of theory for stabilization
by noise

Over the past few decades,stochastic systems have
been intensively studied since stochastic modelling has
come to play an important role in science and engineer-
ing (see,e.g.,[4-5,28,39-46]).0n one hand, many
results for stochastic systems have found applications.
The general theory reviewed above has been applied to
study feedback stabilization problems of stochastic sys-
tems , where the results on mean-square stability may be
not applicable. For instance, [ 27 ] applied the general

[15,20-21]

theory on stochastic stabilization and presented a

noise-assisted stabilization method for nonlinear systems
based on the notion of control Lyapunov functions ( see,
e.g.,[41,447); Hu and Mao'* applied a result for
stochastic stabilization ( see Theorem 1 above), [ 20 ]
(Theorem 3. 1) and also[ 5] ) and used the techniques

)[47]

of linear matrix inequalities ( LMIs to study almost

sure stabilization of linear stochastic systems
du(t) = [Ax(t) + Bu(t) ]dt +

m

2 [Cix(t) + Du(t) Jdw,(t),

i=1

(26)
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where one needs to design a state-feedback controller
u(t) =Kx(t) such that the closed-loop system
de(t) =[A + BK]x(t)dt +

m

D L€+ DK]a(1)dw,(1) (27)
iz
is almost surely stable.
Theorem 7 ( see [ 26 | Theorem 2) The

equilibrium of the stochastic system (27 ) is almost

surely exponentially stable with respect to state-
feedback gain K=YX " if there exists a positive definite
matrix X ,a matrix Y and real numbers o; =0 (1<i<
m) such that following LMIs hold:
[H“ - aX H;]
<0,
11, 11,

and , for each i=1,2,---,m,either
(CX+DY)' +(CX+DY) - /2a,X >0 (29)
or

(CX+DY)"+(CX+DY) + /2aX <0, (30)
where IT,, = (AX + BY)" + (AX + BY) ,II,, = diag| -

Xs_X’“"_X},H21=|:(CIX+DIY>T (CZX+

(28)

(C,X+D,Y)"]" and =2 o
=

D,Y)"

On the other hand, the theory of stochastic systems
has been developed by extending control strategies/
methods/notions to stochastic systems.For example, [ 3,
39-40] were dedicated to extension of H_ -type control
theory to stochastic systems; [48-51]developed sliding
mode control (SMC) for stochastic systems; [ 52-54 ]
presented Razumikhin-type theorems for stability/input-
to-state stability of stochastic delay systems; some
results studied stochastic stability/stabilization for
switched systems (e.g.,[55,57]); [58-39] studied
the stabilization problems with input delay (in the
drift) for stochastic systems while [ 31] investigated on
stochastic stabilization with input delay (in the diffu-
sion ) ; recently, [ 60 ] extended the sampled data
control  schemes to stochastic systems; and,
particularly , Mao'** developed the theory of stochastic
stabilization using the sampled data control strategy,
which considered a stochastically controlled system by a
scalar Brownian motion B(t)

de(t) =f(x(t) )dt + Ax([t/7] 7)dB(¢t),

t>0;%x(0)=x, € R", (31)
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where f:R" — R",A € R" and [t/7] is the integer
part of ¢/7 with 7>0 being the sampling interval (see,
e.g.,[61-63]).

Theorem 8 ( see[ 36 | Theorem 3. 3)
[ satisfies f(0)= 0 and the globally Lipschitz continuous

Assume that

condition , that is,

I flx) —f(y) I < al x =y, (32)

for some a>0, and assume that there are two positive

x,y € R",

constants p, and p, such that

1

pz_jpl >, (33)

and,for allx € R",
| Ax1? <p, 1 x1? and | x"Ax1? =p, | x| (34)
Then there is a positive number 7* such that, for any

%, € R", the solution of Eq.(31) satisfies
1
lim sup TIOgl x(t) 1 <0 a.s.

provided 7 e (0,7 ") .In practice ,one can choose a pair
of constant p,e e (0,1) for [36] (Eq.(3.8))to hold
and let 7° =7,where 7 is the unique root to [ 36 ] (Eq.
(3.13)).This result may be thought as an extension of
sampled data control methods to [ 20] ( Theorem 3. 1).
Moreover, the theory of stochastic stabilization has
been generalized to many classes of systems ( in
addition to ODEs).For example, [ 64-65 | extended vi-
brational stabilization to time-delay systems; [ 16-17,
33,66 ] extended the theory of stochastic stabilization to
accomodate partial differential equations ( PDEs ) ;
[29,67] were dedicated to extension of stochastic sta-
bilization to time-delay systems described with function-
al/delay differential equations, where [ 21 | suggested
that the techniques in [ 15,21 ] can be applied to the
class of nonliear functional differential equations in
[67]; Mao et al.'™” generalized the results in [ 20] to
hybrid systems of stochastic differential equations
de(2) = f(x(2) ,t,r(2) ) dt + g(x(t) ,t,r(2) ) dw (),
t >0;x(0)=x, € R" (35)
where both f:R* X R, XS —R"and g:R" X R, XS —
R"™" satisfy the local Lipschitz condition with f(0,t,i)=
0,2(0,2,i)=0 for all t=0,i e S, and grow most
linearly with respect to x; process r(¢) ,1=0,is a right-
continuous Markov chain taking values in S=1{1,2,--,

N} with generator I'=(7y;) vy given by



268

Pir(t +A) =/l r(t) =i}

')/UA"'O(A), L#J7 A>O
I +y,A+0(A), i=],
where y; =0 if i ) while y,; =- 2 v, ; the Markov
=i

chain r(t) has a unique stationary ( probability) distri-

bution 77 = [7,,7,,**,my] which can be determined

N
by solving linear equation 771" =0 subject to Z m; =1
j=1
and 77, > 0 forj € S.

Theorem 9 ( see [ 37 ] Theorem 3.3)  Assume
that, for each i € S,there are constant triples «;,p; and
o; such that

' f(x,t,0) <ol xl?,

| g(w,t,i) 12 <plxl?,

| w'g(x,0,0) 1> =0, 217, (36)
for all (x,t) € R" x R,. Then the solution of Eq.
(35) satisfies

1
lim sup 710g| x(t) | <

a.s. (37)

for all x, € R". In particular, the nonlinear hybrid SDE

(35) is almost surely exponentially stable if

N 1
L
mi|Q; ij j

j=1

Also note that Huang and Mao"™' found that both

< 0. (38)

the diffusion and the Markov chain play important roles
in analysis and synthesis of singular systems and a sin-
gular system can be regularized and/or stabilized by
noise.

Alternatively, the theory of stochastic stabilization
has been generalized by using different types of noise.
For example, [ 66] extended the stochastic stabilization
of PDEs [ 16-17] by using Strotonovich noise; [ 68 ]
studied stochastic stabilization of PDEs by Lévy noise;
[ 69 ] extended the results on almost sure stability/stabi-
lization of stochastic delay differential equations ( see
[48,70-71]) using Lévy noise; and, particularly, [ 72-
73] gave the generalizations of some results in[ 5,20 ]
using Lévy noise,which,e.g., examined the almost sure
stability conditions for deterministic system (1) with

global linear bound (9) that is perturbed by noise

el A BEPLIFUE 5 R ARE A
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dx () =f(x(t =) ,t)dt + inx(t -)dw, (1) +

D(y)x(t =)N(dt,dy),

Iyl <r
ont = 0,x(0) =x, € R ,where N of the form N=
N(dt,dy) =y (dy) dt with Lévy measure v is the com-

(39)

pensator of an F-adapted Poisson random measure N,
independent of Brownian motion w(t) ,defined on R, X
(R™\{0}) ; positive number r is the maximum
allowable jump size; D:R™ — R"™ is a measurable
function. A generalization of [ 20 ] ( Theorem 3.1) is
given as follows.

Theorem 10 ( see [ 73 ] Theorem 3.2)

Assume
thatfI | (I D(y) I Al D(y) 1")v(dy) < o and that
¥yl <r

D(y) does not have any eigenvalue equal to —1 (v al-
most everywhere ) . Moreover, assume that the following

conditions are satisfied

m

2 2
Y I Bxl?<glxal?,
k=1
m

T 2 4
leB,,,xl =yl al”,
=

J'H x'D(y)av(dy) =81 x17, (40)

for allx € R", where ¢ > 0,y = 0,6 = 0. Then the
sample Lyapunov exponent of the solution of (39)

exists and satisfies
) 1
lim sup —log | x(1) | <
t— t

- ('y _K_%_ju <rlog(l +1 D(y) 1)v(dy) +6

a.s. (41)
for any x,#0.1If

v >K+%—5+JII log(1 +1 D(y) 1 )v(dy)

then the trivial solution of the system (39) is almost

surely exponentially stable.

3 Stochastic stabilization of discrete-time
systems

As is well known, noise may play a stabilizing or
destabilizing role in continuous-time systems. Almost
sure stability and stabilization of stochastic differential
equations, or say, continuous-time stochstic systems

have received much attention.As is shown above, there
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are many results and they have been applied to control
design methods for stabilization of continuous-time sys-
tems. However , relatively few works (see,e.g.,[42,74-
76]) are concerned with those problems of stochastic
difference equations, or say, discrete-time stochastic
systems. These existing works are mainly dedicated to
almost sure stability of scalar systems,see [ 74-76] and
the references therein. As is known, whenever a
computer is used in measurement, computation, signal
processing or control applications, the data, signals and
systems involved are naturally described with discrete-
time processes, see, e.g., [ 77-78 . Therefore , theory of
discrete-time dynamic signals and systems is useful in
design and analysis of control systems, signal filters,and
state estimators from time-series of process data as well
as scientific computations. As a matter of fact, discrete-
time stochastic systems and those discretized from con-
tinuous-time stochastic systems have been intensively
studied over the past few decades,see [ 42-43,45,74-
75,79-80] and the references therein.Most of these re-
sults study the stochastic systems in mean-square sense
since it is often relatively easier to analyze some proper-
ties such as stability and asymptotic behavior in this
Way[m.But, as is well known, a mean-square unstable
system could be almost surely asymptotically stable
(or, simply, almost surely stable) , which is concerned
with all paths on the sample space and is desired in
many practical cases. For analysis and design of
discrete-time systems, noise was treated as disturbance
in the literature until,most recently, Huang et al.'*’ de-
veloped a theory for almost sure stability of discrete-
time stochastic systems and,as an application , proposed
a novel controller design method that exploits the stabi-
lizing role of noise in discrete-time systems. The
proposed theory employs a numerical result derived
of Higham'*’.
specifically , Huang et al."”’ defined a function H,( - )

from the inspiring work More
using a numerical result derived from the work [ 42 ]
(see,e.g.,[ 42 ] Fig.5.2) , which is given in Figure 1
and plays an importan role in the proposed theory.
Let us consider a discrete-time stochastic system
Xy =S k) + g(x, k) wy,y,

keZ,; x, e R"\{0}, (42)
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Fig. 1 Curves of function a=H_(b) against b for given £=0

where functions f:R"* X Z,— R" and g:R" X Z,— R"
are such that, for each fixed ¥ € Z, ,the functions f
(+,k) and g( - ,k) are both continuous mapping
from R" to R"; {w,}|,., is an independent and identi-
cally distributed (i.1.d.) sequence with w, obeying
Gaussian distribution /N{0,1).Moreover, assume that

f(0,k)=¢g(0,k)=0, VkeZ, (43)
and there is a function 8, :R,— R, with 8,(1 x1 ) >0
for all |x1>0 such that

| f(x,k) 12V g(w,k) 12 =8,(1 x1),
forallk e Z,.

For the general nonlinear discrete-time stochastic
1 [28

(44)

systems (42) ,Huang et a ] presented a criterion for
almost sure stability that exploits the stabilizing role of
noise in discrete-time systems.

Theorem 11 ( see [ 28 ] Theorem 3. 1)

that there exist real constants Xf =0, Xg = Xg >0,

Assume

sequence { A, | with A, >0, and a positive definite
matrix P € R"" such that,for allk = 0,
fT(xkak)Pf(xk,k) g;\/z‘xszk, (45)
Apx, Pxy < g'(x, k) Pg(x, k) < Ajx; P, (46)
+ [fT(xk 9k)Pg<xk ak) + gT<xk ak>Pf(xk 5k>1 =

AS (k) Pf(x, k) + %gT(xk,k)Pg(xk,k) -

B, Px,. (47)
With ( L\z A 1) > B = 0. Then the solution of system
(42) obeys

1
1ir£1 sup ?logl x, 1 <0 as. (48)
provided there exists a number
26 > g5 +A(A,,85,) (49)

for some a e (0,1) such that
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Xf < min H/(b),

bel AgAy]

(50)

A,
Where(éz N1)>eg, :)T/B =0,
Ly

el=e/22

A ep0) =" L/ A ~ 1~ log s +

log A21j(z,1)dz,
and p(z,v) is the probability density function of X’
random variable with v degrees of freedom.

A specialized version of Theorem 11 for linear dis-

crete-time stochastic system

Xy = Fx, + Gxyw,,, (51)
yields the following result.
Theorem 12 (see[ 28 ] Theorem 4. 1)  Given con-

stants A>0,4,=0 and A = A,>0, assume that there
exists a positive definite matrix P € R"" such that

F'PF < AP, (52)
AP <G'PG< AP, (53)

1
+(F'PG + G'PF) = AF'PF + Y(;TP(; -BP. (54)

With (A7 A1) >B=0.If there exists € >0

satisfying (49) such that A, < min H, (b), then

bel AgAg)

system (51) obeys
1
lir{l sup Ilogl x, | <0 as.

For stochastic stabilization of linear discrete-
time system

Xy = Fay,
one needs to find some matrix G such that stochastic
system (51) is almost surely stable.It is noticed that
Theorem 12 may not be directly applied to this problem
since conditions (52)—(54) are no longer in the form
of LMIs when G is a decision variable.But it is not diffi-
cult to derive the following result from Theorem 12 for
the stochastic stabilization problem, where, by Schur
complement lemma , conditions (44)—(47) in [ 28]
(Theorem 4.2) can be easily rewritten in the form of
LMIs.

Theorem 13 (see| 28 | Theorem 4. 2)
stants A > 0,A, =0 and A, = A, > 0, assume that

Given con-

there are matrices P > 0 and G such that the
following LMIs

F'PF <\, P, (55)
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{—)\iP c]
. <0,
G ~-P

1 - ~
AF'PF + —=(ALP) < = (F'G + G'F),  (57)

(56)

AF'PF -BP ¥ (F'G+GF) G
G - AP
hold with (A7 A1)>B=0 and that there exists £>0

}so,(ss;)

satisfying (49) such that A,< min H_(b) Let G=

belAg.Agl

PG then system (51) obeys
1
lir;? sup Ilogl x, | <0 as.

As an application of the established results, [ 28 ]
proposed a novel controller design method for almost
sure stabilization of linear discrete-time stochastic sys-
tem
(59)

with matrix G of full rank, which requires to find a

Xy = Axy + Buy, + Gxyw,,

state-feedback controller u, = Kx, such that the closed-
loop stochastic system (51) with F=A+BK is almost
surely stable. The following result is derived from
Theorem 12 for the stabilization problem of (59).
Theorem 14  Given constants A>0,A, =0 and

A¢= A, =0, assume that there are matrices X>0 and ¥

such that
ar
- — sk
AL <0, (60)
| Z -X
DS O
¢ <0, (61)
| GX  -X
T (7" +27) * %
N 1
7 -—X 0
A <0, (62)
A
G'X 0 -X
A
F(Z"+7Z) +—X-BX =
<0
_ 1
A -—X
i A
(63)

with (A3 A 1)>B,=0, where Z=AG"X+BY and

entries denoted by * can be readily inferred from sym-
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metry of a matrix,and assume that there exists £>0 sat-

isfying (49) with B= A B, such that A,< min H

bel Ag.Ag) ¢
YX ' G, then the

(b).Let the feedback gain matrix K =
closed-loop system (59) with u, =Kx, obeys

) 1
hrzlﬂiup Ilogl %, | <0 as.

The proposed control design method exploits the
stabilizing role of noise in discrete-time systems and ap-
plies to some cases where the other results in the litera-
ture do not work, which have been verified with

examples in [ 28].
4 Concluding remarks

This paper has given an overview of some recent
advances of theory on stabilization and destabilization
by noise.Particularly, this paper has reviewed a general
theory proposed in [20] and developed in [ 15,21] as
well as its applications and generalizations. It is
observed , as reviewed in Section 3, that the results in
[20] for systems with the linear growth condition have
been used and/or generalized in many works ( see, e.
g.,[26,36-37,73]) and now a few begin to apply the
results developed in [ 15,21 ] for (highly) nonlinear
systems (see,e.g.,[27]).There is much work to do for
(highly) nonlinear systems as well as developments of
techniques such as input delay or sampled data control
(in diffusion ) .This paper has also reviewed the theory
on stochastic stabilization of discrete-time systems de-
veloped in [ 28].It appears that,compared with that for
continuous-time systems, the theory of stabilization by
noise for discrete-time systems and its applications are
in an early stage.In summary, the study of stochastic

stabilization and destabilization is a very rich research

field.
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