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Hybrid stochastic differential delay equations

MAO Xuerong'
1 Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, U.K.

Abstract This paper reviews the current developments in the study of hybrid stochastic differential delay equations

(SDDEs) with emphasis on the existence-and-uniqueness theorems , boundedness, stability and stabilization.

Key words

0 Introduction

Time-delay is encountered in many real-world sys-
tems in science and industry. Differential delay
equations( DDEs) (or more generally, functional differ-
ential equations) have been developed to model such
time-delay systems.Time-delay often causes undesirable
system transient response ,or even instability.Stability of
DDEs has hence been studied intensively for more than
50 years(see,e.g.,[1-3]).

In 1980’s, stochastic differential delay equations
(SDDEs) were developed in order to model real-world
systems which contain some uncertainties or are subject
to external noises ( see, e.g., [4-6] ). Since then,
stability has been one of the most important topics in
the study of SDDEs. The literature in this area is huge
and lots of papers are of open-access.

On the other hand, there has been increasing at-
tention devoted to hybrid systems,in which continuous
dynamics are intertwined with discrete events. One of
the distinct features of such systems is that the underly-
ing dynamics are subject to changes with respect to cer-
tain configurations.A convenient way of modelling is to
use continuous-time Markov chains to delineate many
practical systems where they may experience abrupt
changes in their structure and parameters. Such hybrid
systems have been considered for the modelling of elec-
tric power systems by [ 7] as well as for the control of a
solar thermal central receiver by [ 8].1t was suggested
by [9] to solve control-related issues in Battle Manage-
ment Command, Control and Communications ( BM/
C’) systems by using hybrid systems. Probabilistic
structure and a two-time-scale approach for control of
hybrid dynamic systems were examined by [ 10].In ad-

dition ,Markovian hybrid systems have also been used in

Brownian motion ; Markov chain ;existence and uniqueness ;stability ; feedback control ; stabilization

U and

emerging applications in financial engineelﬁing[1
wireless communications' >’

An important class of hybrid systems is the class of
hybrid SDDEs ( also known as SDDEs with Markovian
switching) , which has been developed since 1990 to
model real-world systems where they may experience
abrupt changes in their structure and parameters in ad-
dition to time delays and uncertainties. One of the im-
portant issues in the study of hybrid SDDEs is the auto-
matic control, with consequent emphasis being placed
on the analysis of stability (see,e.g., [13-15]).The
main aim of this paper is to review the current develop-
ments in the study of hybrid SDDEs and to show their
new trends.

Throughout this paper, unless otherwise specified,
we use the following notation.Let | + | be the Euclidean
norm in R".If A is a vector or matrix,its transpose is de-

noted by A".If A is a matrix, its trace norm is denoted by
Al = m while its operator norm is denoted
by ||A] = ‘leilzple. If A is a symmetric matrix, A, (A4)
and A,
Moreover,let R, =[0,% ) and 7>0.Denote by C([ - 7,

07;R") the family of continuous functions from [ — 7,

(A) denote its largest and smallest eigenvalue.

0] to R" with the norm || ¢ || = _sg;lo| 0(6) 1.

Let (2,F, { F.},=0,P) be a complete probability
space with a filtration { T,

"1 = satisfying the usual con-

ditions (i.e.,it is increasing and right continuous while
Fo contains all P-null sets).We will set F, = ‘F, for
6 el -7,0].Let B(t) = (B,(t),--,B,(t))" be an
m-dimensional Brownian motion defined on the proba-
bility space. Let r(t),t = 0, be a right-continuous
Markov chain on the probability space taking values in
a finite state space S=1{1,2,:--,N| with generator I"=
(77i) wxy-Let p>0 and denote by L. ( [-7,0];R") the
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family of F,-measurable C ([ =7, 0]; R")-valued
random variables £ = {£(0):-7<6<0{ such that
E | ]"<o.Denote by L7 (£2;R") the family of F,-
measurable R"-valued random variables X such that
ElXI"<oo.

In general ,a hybrid SDDE has the form
de(8)=f(x(2) 2 (t=7,(2) ), 2 (=7, (2) ) ,r(2) ,¢)d+

g(a(t) w(t=1(2)) - 2 (t=r,(¢) ) ,r(2) ,t)dB(2)
(see,e.g.,[13-14]) , but in this review we will only
concentrate on its simpler form

do(2)=f(x(t) ,x(t=7) ,r(2) ,t)dt+g(x(2),

x(t=7),r(t),t)dB(t) on =0 (1)

in order to avoid the notation becoming too complicated.
1 Existence-and-uniqueness theorems

Most of hybrid SDDEs used in many branches of
science and industry are highly nonlinear.It is therefore
important to know whether a given hybrid SDDE has a
solution and whether the solution is unique.

Consider the nonlinear SDDE (1) , where

f:R"xXR" xS XxR,—R" and

2:R" xR" xS xR,—R"™
are Borel measurable.In order to solve the equation we
need to know the initial data and we assume that they
are given by
{x(0): —71<60<0}=¢e C([-7,01;R"). (2)

Of course,in general we may allow the initial data
to be C([-7,0];R")-valued F,-measurable random
variables e.g. £ e L'y ([ -7,0];R") but it is sufficient
to consider (2) only in the contents of this review.Mo-
reover,we also require the coefficients f and g to be suf-
ficiently smooth.The well-known conditions imposed for
the existence and uniqueness of the solution are the Lo-
cal Lipschitz condition and the linear growth condition
which are stated as follows.

Assumption 1  ( The local Lipschitz condition )
For each integer h = 1 there is a positive constant K,
such that
Uy i) (x5,0,0) 1PV gy i) —g(x,y,0,0) P

K,(lx=x1*+1y=51%)
for those x,y,x,y e R" with Ix| V Iyl VIzIVIyl<h
and any (i,t) e SXR,.

Assumption 2 ( The linear growth condition )

TR R ARKEHL > 7 AR B A
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There is a constant K>0 such that
f(x,y,i ) 12V 1g(e,y,it) IP<K(1+1x12+1y1%)
for all (x,y,i,t) e R"XR"XSxR,.

The following existence-and-uniqueness theorem is
classical (see,e.g.,[13-14]).

Theorem 1 1 and 2,

equation ( 1) with the given initial data (2) has a

Under Assumptions

unique continuous solution x (¢) on t = —7. Moreover,

the solution has the property that for any p>0,
E‘ ( sup,lx(t)|”)<co, Y T>0. (3)

-r<t<T

One important direction in the study of existence
and uniqueness is to remove the linear growth condition
because many hybrid SDDEs in practice do not obey it.
scalar delay Lotka-

For example, the following

Volterra model
dv(2) =x() [b(r(£)) = a(r(t))x(t) Idt +
o(r(t))x(t —7)dB(1)

does not obey Assumption 2.1t was in this spirit that
Mao and Yuan''! developed the classical Khasminskii
test for SDEs'"®’ to cope with the hybrid SDDEs.To re-
view this important result, we need more notation. Let
C(R"x[ =71,% );R,) denote the family of all contin-
uous functions from R" X[ —7, © ) to R,. Denote by
C*'(R"%S xR, ;R,) the family of all continuous non-
negative functions V(«x,i,t) defined on R"xS xR, such
that for each i € S,they are continuously twice differen-
tiable in x and once in 1. Given Ve C*'(R"XSxR, ;
R, ) ,we define the function LV:R"XR"xSxR_—R by
LV(x,y,i,t) =V(x,i,t) +V.(x,i,t)f(x,y,i,t)n +

1
?trace[gT(x,y,i,t)Vm(x,i,t)g(x,y,i,t)] +

N
Z‘y,jjv(xsj’t>s
j=1
where
V(x,i,t
V(i) = L
' at
aV(x,i,t oV(x,i,t
Vini = (HDRD L SGED )
9%, o,
2 .
V t
Vm(x,i,t):(w .
‘ 0x;0x; nxn

Let us emphasize that LV is defined on R* X R* X§ x
R, while V on R* x § x R,.We can now state a
Khasminkii-type theorem for hybrid SDDEs(see[ 14],
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Theorem 7.3 on page 280).

Theorem 2 Let Assumption 1 hold. Assume mo-
reover that there are functions Ve C*'(R"XSxR,;R,)
and Ue C(R"X[ -7, 0 );R,)as well as a positive

constant « such that

‘l‘im_inf U(x,t)=o, (4)
U(x,t) <V(w,i,e), (5)

LV(x,y.ist) <al 1+U(x.0)+U(ya-1) ] (6)
for all (x,y,i,t) e R"XR"XSXR,.Then the SDDE (1)
has a unique global solution on ¢t € [ —7, o ) for any
given initial data (2).

Let us now take a further step to review another re-
cent result in this direction[ 17 ]. There are still many
important hybrid SDDEs which are not covered by The-
orem 2. For example, consider the hybrid stochastic
delay power logistic model

de(e) =x(t) ([a,, +b,,x(t—7) -

c,mxz(t)}dt +opa(t—7)dB(1)) (7)
in population dynamics, where «,, b, etc. are all real
numbers. This hybrid SDDE can be used to model the
population growth of certain species. When we attempt
to apply Theorem 2 we encount a new problem.To ex-
plain, if we choose V(x,i,t)= 6" with §,>0,then LV
has the form

Lv(x’y’i’t) = 201-962[01- + bzy - cisz +

N
0.0; ¥y + Z %jesz. (8)
i=1

Here the polynomial 26,5 [ b,y—c,x” ] +6,0-x”y" appears
on the right-hand side and it has an order of 4 which is
higher than the order of V(x,i,t) = 6,x°, whence (6)
could not be satisfied. The following generalised Khas-
minskii-type theorem established in [ 17 ] is particularly
useful in this situation.

Theorem 3 Let Assumption 1 hold. Assume mo-
reover that there are functions Ve C*'(R" xS xR, ;
R,)and U,,U, e C(R"X[ -7, );R,)as well as a
positive constant o such that
\xlliinoo —Tis{lwal(x’l):w ’ 9)
Ul(x,t) < V(x,i,t) < Uy(x,t), (10)
LV(x,y,i,t) <a[l+U((x,t) +U(y,t —7)] -

Uy(x,t) + Uy(y,t = 7) (11)
for all (x,y,i,t) e R"XR"XSxR,.Then the SDDE (1)

has a unique global solution on t € [ =7, » ) for any

given initial data (2).

This theorem was essentially proved in[ 17 ] but
what we state above is slightly more general.In fact, we
can even take a further step,as [ 18] did,to show:

Theorem 4 Theorem 3 still holds if (11) is re-
placed by

LV(x,y,it) <al 1+U,(x,0) +U,(y,t-7) ] -

Uy(w,1) +BU,(y,t-7) (12)
with some constant 8>1.

But we leave the details of the proof to the reader.
2 Stability

From now on we will let Assumption 1 be our

standing hypothesis which we will not mention

explicitly. There are various types of stochastic stability
(see,e.g.,[5,14,16]) for hybrid SDDEs but we only
review some of them.For the purpose of stability ,we as-
sume that (0,0,i,t)=0 and g(0,0,i,t) =0 so the
hybrid SDDE (1) admits a trivial solution x( )= 0.

One of the most important stability concepts is the
exponential stability. Here, the key idea is to show not
only that some quantity decays with time, but also that
the decay is exponential. Applying this idea to the p-th
moment of the solution gives moment exponential stabil-
ity.Similarly , asking for exponential decay for almost all
sample paths leads to almost sure exponential stability.
Such properties are highly-valued in many application
areas.Hybrid SDDEs are a kind of stochastic functional
differential equations. It is natural to employ the
Lyapunov functionals rather than functions to study the
stability. However, it appears to be more difficult to con-
struct the Lyapunov functionals than the Lyapunov func-
tions.It is therefore important to explore the possibility
of using the method of Lyapunov functions to determine
sufficient conditions for stability. One of the useful
criteria on the exponential stability is the following
result(see[ 4], Theorem 7. 22 on page 290).

Theorem 5  Assume that there is a function Ve
C*'(R"xSxR,;R,) and positive constants p,A,,A,,
¢, ,¢, with A ;>\, such that

o lxl"<sV(x,i,t) <c,lxl”,

V (x,i,t) e R"XSxR, , (13)

and
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LV(x,y,i,t) =X lxl"+d,1y1",
Y (x,y,i,t) e R"XR"xSxR,. (14)
Then for every initial data (2) ,the solution of equation

(1) obeys
1
lim supTIOg(Elx(t) ")y <-A,

where A € (0,A,-A,) is the unique root to A,e’” =, -
Ac,.That is, equation (1) is exponentially stable in p-th
moment.

In the stability study, the method of M-matrices
(see,e.g.,[ 19]) has been used frequently. For illus-
tration, let us cite a result from[ 13 ], which can be used
very conveniently in practice.

Theorem 6 Let p=2. Assume that for each i e

S, there is a pair of real numbers B8; and ¢; such that

fo(x,y,i,t)-lL;llg(x,y,i,t) ?<B, 1x1*+o, 1y1> (15)

for all (x,y,t) € R"XR"xR,. Assume that
A:=—diag(pB,,+,pBy) ~I’

is a nonsingular M-matrix so (g, ,-,qy) = A" 1>

0,where 1=(1,1,,1)"1f
Vies, (16)
then the SDDE (1) is asymptotically stable in p-th mo-

pqio<l,

ment.

To explain some special features which Theorem 6
shows,let us consider a simple scalar SDDE
de(t) = a(r(t))x(t)dt + b(r(t))x(t —7)dB(t), (17)
where B (t) is a scalar Brownian motion, r (t) is a
right-continuous Markov chain with the state space S=

{1,2}and the generator

-1 1
F:('}’ij)zxzz( )’ v>0
Y v

and
|76 ifi=1, |1 ifi=1,
a(i)= ‘ 1 ifi=2, b=y rica.
The SDDE (17) can be regarded as the result of the
following two SDDEs
dx(t) == 6x(t)dt + x(t — 7)dB(t)

(18)
and

dx(t) =x(t)dt + 2x(t — 7)dB(t) (19)
switching from one to the other according to the move-
ment of the Markov chain r(¢) .1t is easy to see that the
SDDE (18) is mean-square exponentially stable while

TR R ARKEHL > 7 AR B A
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the SDDE (19) is not. However, we shall see that if y is
sufficiently large, then the hybrid SDDE (17) will be
mean-square exponentially stable.In fact,to apply Theo-
rem 6 with p=2,we observe that(15) becomes
—-6x°+0.5y" ifi=1,
x*+2y° if i=2.
giving 8,=-6,8,=1,0,=0.5 and ¢, =2. Accordingly,

a(i)x’+0.56°(i)y’ =

the matrix A defined in Theorem 6 becomes

13 -1
A=| |
-y y2
This is an M-matrix provided y>13/6.Compute
2= 1 ('y—Z 1 ’
12y-25\ y 13)°
whence

o) (1) | (y=1)/(12y-26)
(qz)_jl (1)‘ (y+13)/(12y-26) |

Consequently, (16) becomes

y-1 < 4(y+13) <
12y-26 12y-26 °
which require y> 3.25.We can therefore conclude that

the hybrid SDDE (17) will be mean—square exponen-
tially stable provided y> 3. 25.

We observe that Theorem 5 does not only require
the function V(x,i,t) have the same degree p for each
ie S but also the diffusion operator LV (x,y,i,t) be
bounded by a polynomial with the same degree p for ev-
ery i € S.These requirements are somehow restrictive.
(7) and its
corresponding LV of the form(8) ,we see that Theorem

For example, recalling equation
5 could not be applied as the higher order polynomial
20.4°[ b,y—c,x’ ] +6,0:x°y" appears in LV.To cope with
this situation , the following theorem is useful.
Theorem 7 Assume that there are functions Ve
C*'(R"xSxR,;R,) and Ue C(R";R,) ,and positive
constants p,c,,c,,A;>A, and A;> A, such that
o lxl"<sV(x,i,t) <c,lxl”,
Y (x,i,t) e R"™xXSxR,, (20)
and
LV(x,y,i,t) <=A, lx"+A, 1y 1P =AU(x) +A,U(y)
Y (x,y,i,t) e R"XR"XSxR,. (21)
Then equation (1) is exponentially stable in p th mo-
ment.

This theorem is a generalisation of Theorem 7 and
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can be proved by the technique developed in [ 22 ]
though we leave the details to the reader. However, we
are going to explain that this theorem is till not be able
to cope with the hybrid SDDEs who have different non-
linear structures in different modes. For example,
consider a scalar hybrid SDDE
de(e)=f(x(t) ,x(t=7) ,r(t) ) di+g(x(2),

x(t—7),r(t),t)dB(t). (22)
Here B(t) is a scalar Brownian motion,r(t) is a right-
continuous Markov chain on the state space S=1{1,2|

with the generator
(23)

while

flo,y e, 1)==2(x42’),  g(x,y,t,1)=5",

flx,y,t,2)=0.5x, g(x,y,:,2)=0.5y,
for(x,y,t) € RxRxR,.This hybrid SDDE can be re-
garded as it operates in two modes ( namely mode 1
when r(#)=1 and mode 2 when r(z)=2) and it obeys

dx(t)=-2[x(t)+x°(t) Jde+x*(t-7)dB (1) (24)
and

dx(1)=0.5x(t) de+0. 5x(t—7)dB(¢) (25)
in mode 1 and 2, respectively, and the system will
switch from one mode to the other according to the
probability law of the Markov chain. We observe that
sub-system (24) in mode 1 is nonlinear while the other
sub-system (25) in mode 2 is linear.That is,the hybrid
SDDE (23) has significantly different structures in dif-
ferent modes.For such a hybrid SDDE , when we attempt
to apply e.g.Theorem 7 to study its stability , we encoun-
ter a new problem.To see this new problem,we define,
for example, V e C*'(R xS X R,;R,) by

%%, ifi=1,

0> ifi=2

’

V(x,i,t) =

for (x,t) € R x R, , where § is a positive number.
Clearly,

(1A @)« < V(x,i,t) < (1V 0)a°,
that is, condition (20) is fulfilled. However, compute

LV(x,y,1,t)=—4x(x +2°) +y* = x> + 6x" =

- (5-0)x" — 4" +y", (26)
and
LV(x,y,2,t) = 6x" + 0.250y" + 4x° — 40x° =

- (36 - 4)x> +0.2560y°, (27)

we observe that they are polynomials with different de-
grees in different modes whence condition (21) could
not be satisfied. This problem prevents Theorem 7 from
being used.

To tackle this new problem, we observe that the
hybrid SDDE (22) has different nonlinear structures in
different modes. It is natural to use different types of
Lyapunov functions in different modes. For example, let
us define Ve C*'(RxSxR,R,) by
X, ifi=1,
2(x+xt), ifi=2,

for (x,1) e R XR,.This of course does not obey condi-

V(x,i,1)=

tion (13) ,but it will make LV to have a similar form as
condition (14).In fact,compute
LV(x,y,1,1)=—4x(x+x’) +y* -2 +2(a +2*) =

—3x7 22" +y* (28)
and
LV(x,y,2,1) =227 +4x* +(0. 5+3x% )y +4a” -8 (" +x*) <

—24°+0. 57— 1. 752" +y*. (29)
That is,we always have

LV(x,y,i,t) <-1.75(x"+x*) +(y*+y*)
for i=1,2.1f we define U,(x)=x" and U,(x)=2(x"+
x*) for x e R, then

U (x)<sV(x,i,t)<U,(x) (30)
and

LV(x,y,i,t) <-0.875U,(x)+0.5U,(y) (31)
for all x,y e R,t=0 and i=1,2. We observe that these
are significantly weaker than conditions (20) and
(21).The question is: can we establish the stability
result under these weaker conditions? A positive
answer to this question was established recently in
[ 17 ]. The following is a theorem from [ 17 ] which
shows that the hybrid SDDE (22) is exponentially
stable in mean square.

Theorem 8 Assume that there are three functions
Ve C*'(R"xSXR,;R,) and U,,U, e C(R"X[ -1,

© );R, ) ,as well as two constants A,> A,>0,such that

Jim (U, (%,0))= o0, (32)
U (x,t) <V(x,i,t) <U(x,1),

Y (x,i,t) e R"XSXR,, (33)
LV(x,y,i,t) <=A,U,(x,0) +A,Uy(y,t-7) ,

Y (x,y,i,t) e R"XR"xSxR,. (34)

Then the solution of equation (1) with the initial data
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(2) has the moment properties that

1
llirar.}T sup log( EU,(x(t) ,t)) <-¢ (35)
waUz(x(l),t)dt < o (36)

while it also has the sample (pathwise) properties that

1
,IHE supTIOg(U,(x(t),t))ﬁ—g a.s. (37)
waz(x(t),t)dt < ® as (38)

where &£ >0 is the unique root to the equation A, =
etch,e”.

The asymptotic estimates obtained in Theorem 8
are in terms of functions U, and U,.If we impose a bit
more condition on these functions, we can obtain more
explicit estimates on the solutions. For example, if we
further assume that

o lx1"<U,(x,t) and
Y (x,t) e R"XR, (39)

for some positive numbers ¢, ,¢,,p and ¢,then the solu-

e, lx1'<sU,(x,t)

tion has the moment properties that

1
lim SupTI()g(Elx(t)V’)S—é‘, (40)
j Elx(e) 1%dt < oo (41)
0

while it also has the sample (pathwise) properties that

1
lim supTIOg( lx(t) 1) $—£ a.s., (42)
11— p
[ ra@1d < @ as (43)
0

We observe that assertions (40) and (42) show the
exponential stability in p th moment and probability one
(almost surely) (see,e.g.,[20]),respectively, while
assertions(41) and (43) show the H_ -stability (see,
e.g.,[21]).

Talking about the moment exponential stability and
almost sure one, they do not imply each other in
general. However, in many hybrid SDDEs, the former
does imply the latter. The following theorem describes
this situation' "
Theorem 9  Assume that there is a K> 0
such that

f(x,y,i,0) 1V Ig(x,y,i,0) | <K(lxl+1yl),

V (x,y,i,t) e R"XR"xSxR,. (44)
Let p>0 and A>0.1f
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1
lim supTIOg(Elx(t) 17y <-A,
then

1
lim SupTl()g( lx(e) 1) $—A a.s.

3 Robust boundedness and stability

In the study of asymptotic properties, the robust
stability has received a great deal of attention.For exam-
ple,the motivation of robust stability together with ex-

Ackermann'® |, and an

amples can be found in
excellent discussion of the stability radii of linear
systems with structured perturbations can be found in
Hinrichsen and Pritchard ®*. Su'®’ and Tseng et
al.'” discussed the robust stability for linear delay
equations.In the aspect of robustness of stochastic sta-

) studied the robust stability for a

bility , Haussmann
linear system and Ichikawa'®' for a semilinear system.
Mao et al.'”’ discussed the robust stability of uncertain

linear or semilinear SDDEs. Mao "

investigated the sta-
bility of the stochastic delay interval system with Mark-
ovian switching.For the further development in this di-

4] and the refer-

rection we refer the reader to the book'
ences therein. However, up to 2013, the underlying
SDDEs are either linear or nonlinear with the linear
growth condition, and little is known about the robust
stability of nonlinear SDDEs without the linear growth
condition.

Hu et al.”’'’ are the first to study the robust
stability of nonlinear hybrid SDDEs without the linear
growth condition.To explain their motivation,let us con-
sider the scalar cubic ordinary differential equation
(ODE)

dx(t)

de
Where a,b>0.Noting that
d(«*(1))
&
we see easily that
2 (1) <x’(0)e ™.

That is, equation (45) is exponentially stable. This

=—ax(t)=bx’ (1), (45)

—2ax’(1) =2bx* (1) <-2ax’(1) , (46)

equation has appeared frequently in engineering,
biology, etc. and has been widely used to explain the

concept of stability of nonlinear differential equations
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(see,e.g.,[32]).In practice,we need to estimate the
system parameters, for instance, a.Given x (1) at time
T,we can estimate a as

a+random error,
where a is the average of a.We assume that a is positive
and is independent of x () in order to keep this
example simple.By the well-known central limit theorem
the random error can be represented by a normal distri-
bution ( more precisely,a white noise ) , that is, we may
write a as

a+,/V,B(1),

where V_ is the variance which may or may not depend

on the state x (¢),and B(t) is a white noise (i.e.,
B(t) is a scalar Brownian motion).If V, is dependent
on x(t),say V, = (ox(t))?, then equation (45)
becomes the 1t6 SDE

dx(t)=[ —ax(¢) =bx’(t) Jdi+ox*(t)dB(t). (47)
This equation can of course be regarded as a stochasti-
cally perturbed system of equation (45) and the sto-
chastic perturbation ox” () dB(t) is a nonlinear form
of x(t).By the It6 formula,we have
d(x*(t)) =[ —2ax’(t) = (2b-c*)x* () Jde+

2007 (1) dB(1) <-2ax*(t)di+20%° (1)dB(t), (48)
If o> <2b.This implies easily that

E(x°(1)) <x*(0)e™.

In other words,the SDE (47) is exponentially sta-
ble in mean square.This shows that the given equation
(45) can tolerate the nonlinear stochastic perturbation
ox’(t)dB(t) so that its perturbed SDE (47) remains
stable provided that the intensity of the stochastic per-
turbation is sufficiently small (i.e.,o” <2b).

Let us now take one more step.lIt is often that we
have to estimate parameter @ based on the past state,
say x(t—7) , instead of the current state x(¢),due to
the time lag. Hence the variance above may have the
form V= (ox(t—7))°. Accordingly , equation (45) be-
comes the [t6 SDDE
dx(t)= [ —ax (1) =bx’(¢) Jdt+ox (1) lx(t—7) 1dB().(49)
Once again, this SDDE may be regarded as a stochasti-
cally perturbed system of equation (45) and the sto-
chastic perturbation ox(¢) Ix(t—7)1dB(#) is a non-
linear form of x (¢) and x (¢—7).By the Ito formula,

we have

d(x*(t)) <[ -2ax"(t)-(2b-0.50")x*(t) +

0.50°x"(t—7) Jdt+20%°(¢) 1x(t=7) 1dB(t). (50)
Theorem 7 shows that this SDDE is exponentially stable
in mean square provided ¢ <2b.In other words, the
given equation (45) can also tolerate the nonlinear sto-
chastic delay perturbation without losing stability prop-
erty.

Let us now take one furthermore step in order to
form a nonlinear perturbed hybrid SDDE. Assume the
cubic system is operated in two modes.In mode 1, it

obeys the ODE
#(1)=-a(1)x(1)=b(1)x(1),
while ,in mode 2,it obeys the ODE
x()=-a(2)x(t)=b(2)x’(1).
The system will switch from one mode to the other ac-
cording to the Markov chain r(¢) on the state space S=

{1,2}.In other words, the system is described by the
hybrid ODE

dde) ==a(r(1))x(1)=b(r(1))x’(1).
!

By the technique of parameter estimation, its stochasti-

(51)

cally perturbed system may take the following hybrid
SDDE form
de()=[=a(r(t))x(t)=b(r(t))a’(t) Jde+

o(r(t))x(t) lx(t—7) dB(t), (52)
where g (1) and o (2) are two numbers, representing
the intensities of the stochastic perturbation. The study
of robust stability is to get the bounds on both of them
so that the perturbed hybrid SDDE (52) remains sta-
ble.

The examples above show clearly that a given sys-
tem may subject to a nonlinear stochastic perturbation
which do not satisfy the linear growth condition.In the
simple case of (47) or (49) ,the existing theory shows
that the corresponding perturbed system is exponentially
stable in mean square.That is,a stable system can toler-
ate a nonlinear perturbation without losing stability
property.Hu et al.”®" are the first to develop a general
theory on the robust stability for nonlinear hybrid
SDDEs.Let us now review their contributions. They first
established new criteria on asymptotic boundedness and
stability under the following assumption.

Assumption 3 Let g>p =2 and assume that for
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each i € S, there are nonnegative numbers B, , 8,8,

B:s and a real number B,, such that
-1
i) gy i) 1P

BB 217485 1y 12 =B, a1 248, 1y 1772 (53)
for all (x,y,t) e R"XR"xR, ,and

Az=diag(pBr, -, pBy) ~ I
is a nonsingular M-matrix.

Condition (53) imposed in this assumption is
purely motivated by the examples discussed above.
There is no need to explain how the first three terms in
the right hand side of (53) appear, as they are very
standard.To see how the fourth and fifth terms may ap-
pear,we set p=2 and ¢=4 so (53) becomes

fo(x,y,i,t)+%|g(x,y,i,t) I’n<
Ba*Bi |x|2+Bi3 |y|2_ﬁi4 |x|4+ﬁi5 |3’|4-
Comparing this with the drift terms in the right hand
side of (50),we see how the terms of B, | x1* and
Bis|y!* may appear naturally.
By the theory of M-matrices, we observe that under

Assumption 3, we have

(6,,.,6,) 1= A" 10, (54)

that is,0,>0 for all i € S, where 1= (1,---,1)". With
these notation and assumptions, Hu et al."*'' proved the

following two theorems.

Theorem 10 Let Assumption 3 hold. Let (6,,
-++.0,)" be defined by (54).Assume also that

maxpf; ;<1 (55)
and

r}rleingi,Bi4 >r?:1§<0iﬁi5. (56)

Then for any given initial data (2),there is a unique
global solution x () to the hybrid SDDE (1) on t e
[ -7, ).Moreover,the hybrid SDDE (1) is asymptoti-
cally bounded in p th moment, that is, the solution satis-

fies

a
lim sup Elx(t)l”Sfl, (57)

&c,
where e=g, A\e ¢, while ¢, =log(a,/as)/7 and £,>0
is the unique root to the following equation
a, =& ¢, rase’ (58)

and the parameters used above are defined as follows;
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c=mind, ¢ =maxb;, 5 =maxp6f,

6y =maxpd B, 6, =minpd B, &s=maxp B,
6=0.5(1-8;), a,=( 2/17)57(”72)/28’{/2 ’

= I—M 26,

o, = ’ o3 = ’

P P
85(p=2) 85(q-p+2)
=04, Qs= -
q
Theorem 11 Let all the conditions of Theorem
10 hold with B;, =0 for all i € S.Then for any given
initial data (2), the unique global solution x () to

equation (1) has the properties that

1
lim supTIOg(E|x(t)|”)$—8 (59)
and
. 1 &
lim supTIOg( lx(t) 1) <-— a.s. (60)
1— p

where £>0 is the same as defined in Theorem 10, and

moreover,

walx(t)l"dt< . (61)

Hu et al.””"" then applied these two theorems to
study the problems on the robust stability and bounded-
ness proposed in the beginning of this section.To dem-
onstrate their applications, let us consider an n-dimen-
sional nonlinear hybrid differential equation

P f () () 0,
Where F:R*"xSXR,—R". Assume that this given hybrid

differential equation is either asymptotically stable or

(62)

bounded.We would like to know how much a stochastic
delay perturbation in the diffusion form that equation
(62) can tolerate so that its perturbed system
da(t)=F(x(t),r(t),t)dt+

G(x(t—7),r(t),t)dB(1) (63)
remains asymptotically stable or bounded ,where G;R"X
SxR,—R"™. As a standing hypothesis, we assume that
both F and G satisfy the local Lipschitz condition
(namely Assumption 1).

Let us first discuss the robust boundedness. The
following assumption guarantees the asymptotic bound-
edness of the given hybrid differential equation (62).

Assumption 4 lLet ¢>p =2 and assume that for

each i € S,there are nonnegative numbers 3;,,8,, and a
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real number ,Eiz such that

x'F(x,i,t) $,é“ +EL.2 lx| Z—EM x| 07"
for all (x,7) e R"XR, ,and

A:= —diag(p B, ,p By) —I

is a nonsingular M-matrix.

(64)

We also need another condition on the uncertain
diffusion coefficient G.
Assumption 5 Let g>p=2 be the same as in As-

sumption 4 and assume that for each i € S, there are
nonnegative numbers [3,-3 ,Bis and Ei(, such that
1G(y,ist) 1P<B By 1> 4B 1y 1777
for all (y,t) e R"XR,.
The study of robust boundedness is to give the

(65)

bounds on the parameters B/z and Ezs in order for the
perturbed system (63 ) to remain asymptotically
bounded.The following theorem describes this situation.

Theorem 12 Let Assumptions 4 and 5 hold. De-
fine

— -

(0,,,0,) :=A"T, (66)

where 1 has been defined before (so all gi’s are posi-
tive) . If

BB <% —
p(p-1)6, (p—1)6,

for all i € S, then the perturbed system( 63) is asymp-

(67)

totically bounded in p-th moment.
This theorem is a simple application of Theorem
10.Similarly but using Theorem 11, we can show the

following theorem on the robust stability.

Theorem 13 Let Assumptions 4 and 5 hold with

EH =[3i6 =0 for all i € S.Let Ei ’s be the same as defined
in Theorem 12.1f (67) holds,then the perturbed system
(63) is not only exponentially stable in pth moment but
also almost surely exponentially stable, and moreover,

the solution of the perturbed system satisfies
f El x(t) 17dt < .
0

We next consider how much a delay perturbation
in the drift part that equation (62) can tolerate so that
its perturbed system

dxétt) =F(x(1) ,r(1) ,0) +G(x(t=7) ,r(1) ,1)

(68)

remains asymptotically stable or bounded , where G:R"x

SxR, —R". As a standing hypothesis, we assume as

usual that both F and G satisfy the local Lipschitz con-
dition ( namely Assumption 1). Once again, let us
discuss the robust boundedness first. Similarly (to As-
sumption 5) ,we impose the following assumption on the
uncertain coefficient G.

Assumption 6 Let g>p =2 and assume that for

each i € S, there are nonnegative numbers 8,8, and

Bie such that

|@(3”i’t) * $Bi6+,éi3 |y|2+,éi5 |y|q_1)+2
for all (v,r) e R"XR,.

Of course we need a similar condition on F as As-
which
boundedness of the given hybrid differential equation
(62).In order to obtain the explicit bounds on B, ;s

(69)

sumption 4 guarantees the  asymptotic

for the robust boundedness,we will split Biz into ﬁ,z—,,BViz

with El.2>0 as stated below.
Assumption 7 Let g>p=2 be the same as in As-

sumption 6 and assume that for each i € S, there are

nonnegative numbers B;,, B, , a real number 8, and a

positive number 8, such that

A" F (x,i,1) <Bu+(Ba—Ba) 1317 =By lx177 (70)
for all (x,t) e R"XR, ,and

A:= ~diag(pBr,*pBw) -’
is a nonsingular M-matrix.

The following result then follows from Theorem 10
easily.

Theorem 14 ILet Assumptions 6 and 7 hold. De-

fine

(By,.0,)":=A"T, (71)

where 1 has been defined before (so all §,’s are posi-

tive) .If

4 [3;2 R 4 Biz( Ijnei?éjgﬂ )
PY; i

for all i € S,then the perturbed system (68) is asymp-
totically bounded in p th moment.
Similarly, we can show the following theorem on

the robust stability.
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Theorem 15 Let Assumptions 6 and 7 hold with
Bi =B =0 for all i e S.Let 8,’s be the same as defined
in Theorem 14.1f (72) holds,then the perturbed system
(68) 1is not only exponentially stable in p-th moment
but also almost

surely exponentially stable, and

moreover , the solution satisfiesf El x(z) 17dt < oo.
0

We of course could consider the perturbations in
both drift and diffusion and the perturbations may not
only depend on the past state x(¢—7) but also the cur-
rent state x( ¢).That is,the stochastically perturbed sys-
tem of equation (62) may have the form

dx ()= F(x(¢) ,r(t),0)di+G(x () ,x(t-7),

r(t),t)dB(t), (73)

or an even more general form
de(t) = [F(x(t),r(t) ,£)+G(x(t) ,x(t=7) ,r(t) ,t) Jdi+
G(x(t),x(t=7),r(t),t)dB(t). (74)

However, we leave the details to the reader.

4 Stabilization by discrete-time feedback
controls

Given an unstable hybrid SDE in the form of (75)
with uw =0, it is required to find a feedback control
u(x(t),r(t),t) ,based on the current state,so that the
controlled system
dr(e)= (f(x(e) ,r(e) ) +u(x(e) ,r(t),t))de+

g(x(t),r(t),t)dB(1) (75)
becomes stable.Here the control u is R"-valued and,in
practice ,some of its components are set to be zero if the
corresponding components of dx(#) are not affected by
u. Such a continuous-time feedback control requires
continuous observation of the state x(t) for all time =
0.However, it is more realistic and costs less in practice
if the state is only observed at discrete times,say 0,7,
27, ,where 7>0 is the duration between two consecu-
tive observations. Accordingly, the feedback control
should be designed based on these discrete-time obser-
vations , namely the feedback control should be of the
form u(x([t/7] 7),r(t),t),where [t/7] is the
integer part of t/7.Hence, the stabilization problem be-
comes to design a feedback control u(x([t/7] 7),
r(t),t), based on discrete-time observations of the

state,in the drift part so that the controlled system

dx(e)= (f(x(e) ,r(2) o) +u(x([t/7] 7),
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r(t),t) )di+g(x(t),r(t),t)dB(t) (76)
becomes stable.Mao'**! is the first to study this stabili-
zation problem. The theory in[ 33 ] shows that if the
SDE(75) is mean-square exponentially stable, then so
is the discrete-time controlled system(76) provided 7 is
sufficiently small. The theory enables us to transfer the
discrete-time controlled problem into the classical (or
regular ) continuous-time controlled problem. Let us
begin to review this theory.In [ 33 ], the following global
Lipschitz condition is imposed.

Assumption 8

Assume that there are positive

constants K, ,K, ,K; such that
If(x’i’t>_f(yai’t> | gI<I |x_9’| ’

lu(x,i,0)-u(y,i,t) | <K, lx=yl, (77)
lg(x,i,t)—g(y,i,t) | <K lx—yl
for all (x,y,i,t) e R"XR"XSXR,.Moreover,
f(0,i,t)=0, u(0,i,t)=0, g(0,i,t)=0 (78)

for all (i,t) e SXR,.

We also observe that equation (76) is in fact a
stochastic differential delay equation ( SDDE) with a
bounded variable delay. Indeed, if we define the
bounded variable delay ¢:[#,,% )—[0,7] by

C()=t=kr for kr<i<(k+1)7,
for k=0,1,2,---,then equation (76) can be written as
de(e) = (f(a(2) ,r(e) ,0) +ula(t={(£) ) ,r(2) 1) )de+

g(x(t),r(t),t)dB(t). (79)
It is therefore known (see,e.g.,[ 14]) that under As-
sumption 8 ,equation (76) has a unique solution x(¢)
such that E 1 x () 1 <o for all t = 0. Let us now
introduce the auxiliary controlled hybrid SDE
dy(0)= (fly () ,r(e) ) +uly () ,r(e) 1) ) dit

g(y(t),r(e),t)dB(1) (80)
on (=1, ,with initial data y(z,) =%, € R" and r(¢,) =
ro, €S at time t, =0.The difference between this SDE
and the original SDE (76) is that the feedback control
here is based on the continuous-time state observation
y(t).Denoted by y(t;x,,7,,t,) the unique solution.
Assume that we know how to design the control function
u;R"XSxR, —R" for this auxiliary controlled hybrid
SDE to be mean-square exponentially stable. ( The tech-
niques developed in[ 34-36] , for example, can be used
to design the control function u.) We will then show that

this same control function also makes the original dis-
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crete-time controlled system (76) to be mean-square
exponentially stable as long as 7 is sufficiently small
( namely we make state observations frequently
enough ). We therefore assume that this auxiliary con-
trolled hybrid SDE (80) is mean-square exponentially
stable.To be precise,let us state it as an assumption.
Assumption 9  Assume that there is a pair of
positive constants M and y such that the solution of the
auxiliary controlled hybrid SDE (80) satisfies
Ely(t3x0,r9,t0) 17<Mlx,le?"™  Viz=, (81)
for all {,=0,x, e R" and r, € S.
The key result of [33] is the following theorem.
Theorem 16 Let Assumptions 8 and 9 hold. Let

7" >0 be the unique root to the equation

K(7") (4M) rpattry - L

> (82)

where
_ K, Mt oy
K(7)= 27[47_([{?_'_[{5)+2K§]e(7+2K1+3kz+K§)rl (83)

If 7< 77, then there is a pair of positive constants M
and A such that the solution of the controlled hybrid
SDE(76) satisfies

Elx(t;x,,r) 1?<Mlx,1%e™, Yi=0 (84)
for all x, e R" and rj € S.

This is of course a very general result. However, it
is due to the general technique used in 33 that the
bound 77 on 7 is not very sharp.From the point of con-
trol cost, it is clearly better to have a larger 7" . Influ-
enced by [ 33 ], a number of recent papers (e.g.,
[37]) have significantly improved the bound 7. In
particular, You et al."™ have used the method of the
Lyapunov functionals to make a very nice progress in
this direction. Let us review their new techniques and
results by stating their assumptions first.

Assumption 10  Assume that the coefficients f
and g are all locally Lipschitz continuous (see Assump-
tion 10 ). Moreover, they satisfy the following linear
growth condition
f(x,i,t) <K Ix|l and lg(x,i,t)|<K,lxl (85)
for all (x,i,t) € R"XSXR, ,where both K, and K, are
positive numbers.

Assumption 11  Assume that there exists a

positive constant K, such that

lu(x,i,t)—u(y,i,t) | <K;lx—yl (86)
for all (x,y,i,t) e R"XR"XSXR,.Moreover,u(0,i,t)=
0 for all (i,1) e SXR,.

The key technique in[ 38 ] is to use a Lyapunov
functional on the segments £, :={x(t+s) : =27 <s <0}
and 7, :=1{r(t+s) :=27<s<0} for t=0.For £, and #, to
be well defined for 0 < <27, they set x(s) = x, and
r(s)=r, for =27 <5 <0.The Lyapunov functional used
in [ 38] is of the form
V(&,,7,,t) =U(x(t),r(t),t) +

Hﬁ_ ﬂ[r | f(x(v),r(v) w) +u(x(8,),r(v),w) 1* +

Il g(x(v),r(v),v) | *]dods (87)
for t=0,where 6 is a positive number to be determined
later and we set

Sfx,i,s)=f(%,i,0),

g(x,i,s)=f(x,1,0)
for (x,1,s) e R"XSx[ =27,0).0f course, the functional

u(‘x’i’s): u(x’i’o) b

above uses r(u) only on i-7<u<1t so we could have
defined 7,:={r(t+s) :—1<s<0} .But,to be consistent
with the definition of £,,we define 7, as above and this
does not lose any generality. We also require Ue
C*'(R"x S xR,; R,), the family of non-negative
functions U(«x,i,t) defined on (x,i,t) € R"XSxR,
which are continuously twice differentiable in x and
once in t.For Ue C*'(R"XSxR,;R,),let us define
LU:R"xSxR,—R by

LU(x,it)= Ux,it) +Ua,it)[flw,it) +ulx,it)] +

1
Stracel g (i ) U (i (i) ] +

> UG, (88)

The critical condition used in[ 38] is the following as-
sumption on U.

Assumption 12 Assume that there is a function
Ue C*'(R"xSXR, ;R, ) and two positive numbers A, ,
A, such that

LU(x,i, )+, U (x,i,0) 1IP<=A, 1«17
for all (x,i,t) e R"XSxR,.

Let us comment on this assumption.Condition (89) im-

(89)

plies
LU(x,i,t) <-A,lxl7, (90)

which guarantees the asymptotic stability (in mean
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square etc.) of the controlled system (75).In other
words , the continuous-time feedback control u (x (),
r(t),t) will stabilize the system.However,in order for
the discrete-time feedback control u (x ([t/7] 1),
r(t),t) to do the job,we need a slightly stronger con-
dition , namely we add a new term A, U (x,i,t)|” into
the left-hand-side of (90 ) to form (89 ). As
demonstrated in[ 38 ], this is quite easy to achieve by
choosing A, sufficiently small when the derivative vector
U,(x,i,t) is bounded by a linear function of x.We can
now state the first result in [ 38].

Theorem 17
hold.If 7>0 is sufficiently small for

Let Assumptions 10, 11 and 12

TK§ 2 2 2 1
A2>TI[ZT(K1+2K3)+K2] and T$4z, (91)

then the controlled system (76) is H_ -stable in the

sense that

fE|x(s)|2ds<oo. (92)

for all initial data x, € R" and r, e S.

In general , it does not follow from (92) that lim

11—

E(l x(¢) 1) = 0.But,under the conditions imposed in
[38],You et al.made this possible.This is their second
result stated below.
Theorem 18
Theorem 17, the solution of the controlled system
(76) satisfies
limElx(¢)17=0

1—%

Under the same assumptions of

for all initial data x, € R" and r, e S.That is, the con-
trolled system (76) is asymptotically stable in mean
square.

In general ,one cannot imply limlx(¢) | =0 a.s.
puies
from limE ( 1x (¢) 1) = 0. But, in their case, You et
11—

al."® once again made it possible.This is their third re-
sult.

Theorem 19
Theorem 17, the solution of the controlled system
(76) satisfies

limx(¢)=0 a.s.

11—

Under the same assumptions of

for all initial data x, € R" and r, € S.That is, the con-
trolled system (76) is almost surely asymptotically sta-
ble.
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The previous three theorems are on various asymp-
totic stabilities by feedback controls based on discrete-
time state observations. However, all these stabilities do
not reveal the rate at which the solution tends to zero.
You et al.”®® then took a step further to discuss the ex-
ponential stabilization by feedback controls. For this
purpose , they imposed another condition.

Assumption 10  Assume that there is a pair of
positive numbers ¢, and ¢, such that
e lx1’<U(x,it) <c,lxl?

for all (x,i,t) e R"XSxXR,.

The following theorem from [ 38 ] shows that the

(93)

controlled system(76) can be stabilized in the sense of
both mean square and almost sure exponential stability.
Theorem 20 Let Assumptions 10,11,12 and 13
hold.Let 7>0 be sufficiently small for (91) to hold
and set
K;
Y
(so A>0).Then the solution of the controlled system
(76) satisfies

9 and A =\,—0r[ 27 (K3+2K>) +K2]

1
lim supTIOg(Elx(t)|2)$—'y (94)
and
: 1 Y
lim sup710g( lx(t) 1) $—? a.s. (95)

for all initial data x, € R" and r, € S, where y>0 is the

unique root to the following equation

2rye’™ (H,+7H,) +yc, =\, (96)
in which
L ., 247K
H, =GT<27(K1+2K3)+K2) +TT2K§’
212 2 2
. 1267 K3(7-2K12+K2) (97)
1-67°K;

The use of Theorem 17 etc.depends on Assumptions
10,11,12 and 13. Among these, Assumption 12 is the
critical one as the others can be verified easily.In other
words, it is critical if we can design a control function
u(x,i,t) which satisfies Assumption 11 so that we can
then further find a Lyapunov function U(x,i,t) that ful-
fills Assumption 12.

It is known that the stabilization problem (75) by

the continuous-time ( regular) feedback control has
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been discussed by several authors e.g.[ 34-35].That is,
to a certain degree, we know how to design a control
function u(x,i,t) which satisfies Assumption 11 so that
we can then further find a Lyapunov function U(«,i,t)
that obeys (90).If the derivative vector U (x,i,t) of
this Lyapunov function is bounded by a linear function
of x,we can then verify Assumption 12.This motivates
us to propose the following alternative assumption.

Assumption 14 Assume that there is a function
Ue C*'(R"xSXR, ;R, ) and two positive numbers A,
A, such that

LU(x,i,t) <-Aylxl? (98)
and

lU (x,1,0) 1 <A, lxl
for all (x,i,t) e R"XSxR,.

In this case, if we choose a positive number A, <
A/ )\i ,then
LU(x,i,0)+A, U (x,0,0) 1P <=(A;=A,A5) lx1% (100)
But this is the desired condition (89) if we set A, =

(99)

As— A A In other words, we have shown that
Assumption 14 implies Assumption 12.

In practice,we often use the quadratic functions as
the Lyapunov functions. That is, we use U (x,i,t) =
x'Q.x,where Q,’s are all symmetric positive-definite nx
n matrices. In this case, Assumption 13 holds automati-
cally with ¢, =r£n€i£1)\ wn(0,) and ¢, = IPEE?)\ e (0;) . Mo-
reover, condition (99) holds as well with A, =2 max

| Q; | -So all we need is to find Q,’s for (98) to hold.
This motivates us to propose the following another as-
sumption.

Assumption 15  Assume that there are symmetric
positive-definite matrices Q, € R™ (i € S) and a
positive number A; such that

22" Q. [ f(x,i,t) +u(x,it)] +

trace[ g' (x,i,0) Q,(x,i,t) g(x,i,t) ] +

N
Z 'yiijij <-A,lxl?, (101)
i=1

for all (x,i,t) e R"XSxR,.
The following corollary follows immediately from
Theorem 20.

Corollary 1
hold.Set

€ :min/\min( Q,), ¢ ZmaX/\max< Q,),
ieS ieS

Let Assumptions 10, 11 and 15

Ay=2max | Q| .
Choose A,< A;/A; and then set A, =A;—A,As. Let 7>0
be sufficiently small for (91) to hold and set

2

6=— and A=A,-0r[2r(K+2K2) +K:]

1

(s0 A>0).Then the assertions of Theorem 20 hold.

To close this section,let us take a further step.Ob-
serve that the discrete-time feedback control in the con-
trolled SDE (76)is based on the discrete-time observa-
tions of the state,x(kr) (k=0,1,2,:-+)but it still de-
pends on the continuous-time observations of the mode,
r(t),on t=0.0f course this is perfectly fine if the
mode of the system is obvious (i.e.,fully observable at
no cost) , for example, in a financial system where the
mode represents the interest rate (see,e.g.,[11,39]).
However, it could often be the case where the mode is
not obvious and it costs to identify the current mode of
the system (see,e.g.,[12,40]).To reduce the control
cost, it is reasonable that we identify the mode at the
same discrete times k7 (k=0) when we make observa-
tions for the state.It is in this spirit, Song et al.'*!! re-
cently consider an n-dimensional controlled hybrid sys-
tem
dr(8)=[f(x(t) ,r(t) ) +ulx([t/7]7) b ([t/7]7) ) ]dit+

g(x(t),r(t),t)dB(¢) (102)
on t=0,where the new feedback control is based on the
discrete-time observations of both state x (k7) and mode
r(kr).They compare the controlled system (102) with
the continuous-time controlled system (75) and show
that if system (75)
stable, then so is system ( 102 ) provided 7 is

is mean-square exponentially

sufficiently small. The following theorem is their main
result.

Theorem 21 Let Assumptions 8 and 9 hold. Let
£e(0,1) be a free parameter.Let 7>0 be the unique

root to the equation

H(7,e)=0.5(1-¢), (103)
where
Hir.0)= 7K2[4T(1<$+1<§)+21<§]+241<2( 1—&7)X
2K, +2K,+K;
e<21<]+41<2+1<§)<T+1ug<2M/.s>/y) %
[ e(2K|+2K2+K§>(T+1og(2M/g>/y) -1 } , ( 104)
in which



260
y=max(-y;). (105)

If 7<7,then there is a pair of positive constants M and
A such that the solution of the controlled hybrid system
(102) satisfies

Elx(t;x,,r0) 1°<M Elx,1’e™ V=0 (106)
for all x, € R" and r, € S.That is, the controlled hybrid
system( 102) is mean-square exponentially stable.

It should be pointed out that the results on the
controlled system ( 102) are so far much fewer than
these on the controlled system (76 ). The reader may

wish to tackle it.
5 Conclusion

In this paper we made a review on the current de-
velopments in the study of hybrid SDDEs. We mainly fo-
cused on the existence-and-uniqueness theorems, as-
ymptotic boundedness, stability and stabilization.
Although these topics are among the most popular ones,
there are some other important topics which we did not
discuss, for example , the numerical methods for the hy-

brid SDDEs, the applications of hybrid SDDEs in

various branches of science and industry.
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