1674-7070(2015)03-0254-06

卢鹏1 张华2 刘端阳3 项瑛1 许遐祯1

江苏地区二氧化碳浓度时空分布特征分析

摘要

利用瓦里关和上甸子大气本底站观 测的月平均 CO,浓度数据对 GOSAT 卫 星反演的 CO,浓度数据进行验证,结果 表明 GOSAT 产品与台站观测数据有较 好的一致性.利用 2009 年 6 月-2011 年 5月 GOSAT 反演的 CO2 浓度数据,分析 了江苏地区 CO, 浓度的时空变化特征, 结果表明:1)975 hPa 高度层 CO, 浓度高 于850 hPa 高度层,CO,浓度的水平变化 要小于垂直变化;2)在季节变化上,CO, 浓度冬季最高.夏季最低.这可能与植被 光合作用的强弱变化有关:比较前后两 年的 CO, 浓度数据, 夏季和秋季的增速 较快,冬季和春季的增速较慢;3)在日变 化上,发现徐州和南京站02时CO,浓度 最高.14 时 CO, 浓度最低, 这可能也与 植被光合作用的强弱有关.

关键词

GOSAT 数据; CO₂ 浓度; 空间分布; 季节变化; 日变化

中图分类号 P402 文献标志码 A

收稿日期 2015-02-10

资助项目国家自然科学基金(41305132);江苏省气象局环境气象科技创新团队项目;中国科学院战略性先导科技专项(XDA05040201) 作者简介

卢鹏,男,博士,工程师,主要从事温室气体、大气辐射、气候模式方面的研究. climate@live.cn

0 引言

CO₂ 作为重要的温室气体与全球气候变化密切相关.2013 年大气 中全球平均 CO₂ 体积分数为 396.0×10⁻⁶,相当于工业化前(1750 年) 水平的 1.42 倍.2012 至 2013 年,大气中 CO₂ 体积分数增加了 2.9× 10⁻⁶,为 1984 年以来的年度最高增幅^[1].

辐射强迫是气候变化的驱动因子,正辐射强迫会导致地表变暖, 负辐射强迫则会导致地表变冷.相对于 1750 年,2011 年 CO₂ 的辐射 强迫为 1.68 W/m²,并具有非常高的信度水平^[2],因此研究区域 CO₂ 浓度的分布和变化特征,对于应对区域气候变化和制定合理的减排 计划具有重要的参考意义.

为了在更大范围内监测 CO₂ 浓度,发达国家相继发射了具有 CO₂ 监测能力的卫星.欧洲空间局于 2002 年 3 月 1 日发射了 ENVISAT 卫 星,该卫星搭载了大气层制图扫描成像吸收频谱仪(SCIAMACHY), 利用其近红外波段可以反演对流层 CO₂ 柱浓度.美国航天局于 2002 年 4 月 22 日发射了 AQUA 卫星,搭载了 AIRS 仪器,通过对热红外光 谱波段的探测反演对流层中层 CO₂ 浓度.日本于 2009 年 1 月 23 日发 射了全球首颗温室气体探测卫星 GOSAT.美国航天局于 2014 年 7 月 2 日发射了轨道碳观测者 2 号(OCO-2)卫星.

国内利用卫星数据对 CO₂ 的反演算法和时空分布特征做了大量 研究.刘毅等^[3]针对我国正在研制的 CO₂ 监测卫星(TanSat)发展了一 套适用于 TanSat 的全物理的反演方法.白文广等^[4]利用 AIRS 观测数 据分析研究了中国区域对流层 CO₂ 时空变化特征.麦博儒等^[5]利用 SCIAMACHY 观测资料分析研究了广东地区对流层 CO₂ 时空变化 特征.

江苏属于我国经济发达地区,也是 CO₂ 排放高值区^[6],研究江苏 地区 CO₂ 浓度时空分布特征,对于应对气候变化和制定碳减排计划 有重要的参考作用.

地基观测 CO₂ 浓度具有精度高、可靠性强等优点,目前我国也开展了大量的基于 CO₂ 地基观测数据的 CO₂ 时空演变特征分析^[7-10],但由于目前江苏地基观测温室气体的工作刚刚启动,能够利用的地基数据十分有限,因此本文利用 GOSAT 卫星反演的 CO₂ 浓度数据,初步研究了江苏地区 CO₂ 浓度的时空分布规律.

¹ 江苏省气候中心,南京,210009

² 中国气象局气候研究开放实验室,北京, 100081

³ 江苏省无锡市气象局,无锡,214101

1 资料及验证

1.1 资料

GOSAT 卫星是日本于 2009 年 1 月 23 日发射的 全球首颗温室气体探测卫星,其观测传感器包括傅 立叶变化光谱仪以及云和气溶胶成像仪,前者用于 温室气体探测,后者用于收集云和气溶胶信息^[11].

GOSAT 卫星产品主要包括 L0、L1、L2、L3、L4 级 产品.其中 L0 级产品为原始图像数据,L1 级产品为 经过校正和定标的光谱数据,FTS-SWIR L2 级产品 是根据 CO₂ 吸收光谱反演得到的平均柱浓度,FTS-TIR L2 级产品是利用 FTS 热红外波段反演的 CO₂ 垂直廓线资料,FTS L3 产品为根据 CO₂ 浓度数据, 经过插值得到的全球 2.5°×2.5°月平均浓度分布数 据,L4A 级产品是利用 FTS-SWIR L2 数据结合地表 观测数据,经大气输送模型反演得到 CO₂ 月平均通 量产品,L4B 级产品是基于 L4A 产品得到水平分辨 率 2.5°×2.5°,高度从 975 hPa 至 10 hPa 共 17 层 6 h 平均的三维 CO,浓度产品^[11].

目前公众用户可以通过访问 http://data.gosat. nies.go.jp 获得 L4B 数据,本文采用 2009 年 6 月— 2011 年 10 月共 29 个月的 L4B 数据.为了季节讨论 的需要,选取 2009 年 6 月至 2011 年 5 月两整年的 数据进行分析.

1.2 GOSAT 数据的验证

为了验证 GOSAT 反演数据的可靠性,本文首先 选取瓦里关本底站(100.90°E,36.28°N,高度3810 m)和上甸子(117.12°E,40.65°N,高度287 m)CO, 浓度月平均观测数据(http://ds. data. jma. go. jp/ gmd/wdcgg),并将 GOSAT 卫星 L4B 数据处理为相 对应的月平均数据,利用双线性插值将 L4B 格点数 据插值到站点,根据瓦里关和上甸子不同的海拔高 度,瓦里关选取 600 hPa,上甸子选取 975 hPa 高层 的 CO, 浓度进行比较.为了与所能获得的卫星时段 相匹配,瓦里关选取 2009 年 6 月至 2011 年 5 月的 数据进行比较.由于所能获取的上甸子数据从 2009 年9月开始,因此上甸子与 GOSAT 的比较时段为 2009年9月至2011年5月.从图1可以看出瓦里关 本底站观测数据与 GOSAT 卫星反演的 CO, 浓度(体 积分数)数据变化趋势一致,相关系数达到 0.93,通 过了99%的置信度检验;而与上甸子观测数据相比, GOSAT 卫星反演数据能够体现出季节变化的差异, 但是变化幅度要小于上甸子站点观测数据,两者的 相关系数为0.72,也通过了99%的置信度检验.

Fig. 1 Comparison of GOSAT CO₂ data and monthly CO₂ in Waliguan and Shangdianzi during June 2009 to May 2011

2 结果分析

2.1 CO₂ 浓度的空间分布

图 2 给出了利用 GOSAT 卫星数据反演的 2009 年 6 月—2011 年 5 月期间全球 975 hPa 高度层 CO₂ 浓度(体积分数)分布.从中可以看出亚洲东部、欧洲 西部和北美东南部 CO₂ 浓度较高,其中江苏地区处 于全球 CO₂ 浓度最高的区域之中.因此研究江苏地区 CO₂ 浓度的时空变化,有助于我们了解高 CO₂ 浓度地 区 CO₂ 浓度的时空变化.

图 3 给出了 2009 年 6 月—2011 年 5 月期间江 苏省 975 hPa 和 850 hPa 高度层 CO₂ 浓度(体积分 数)分布.从图 3 中可以看出在 2009 年 6 月至 2011 年 5 月期间,975 hPa 高度层江苏大部分地区的 CO₂ 体积分数为(399~400)×10⁻⁶,东部沿海地区和徐州 西部的体积分数略小为(398~399)×10⁻⁶,空间差异 不到 2×10⁻⁶,这表明大气中 CO₂ 具有很好的均一性. 850 hPa 高度层江苏地区 CO₂ 体积分数在(393~ 394)×10⁻⁶,空间差异不到 1×10⁻⁶,这表明 CO₂ 浓度 随着高度的增加而降低,且高空 CO₂ 的空间差异

图 2 2009 年 6 月—2011 年 5 月全球 975 hPa 高度层 CO₂ 体积分数分布 Fig. 2 Distribution of global CO₂ concentration at 975 hPa during June 2009 to May 2011

更小.

GOSAT 卫星反演数据的水平分辨率为 2.5°× 2.5°,在江苏地区的格点数据较少,同时 GOSAT 卫 星反演数据的精度在(1.0~4.0)×10⁻⁶,因受限于 GOSAT 反演数据分辨率和精度,故不能给出江苏精 细化 CO₂ 浓度分布图,所以在江苏开展地基 CO₂ 浓 度监测也是必不可少的.

2.2 CO₂ 浓度的季节变化

图 4 给出了 2009 年 6 月至 2011 年 5 月期间 975 hPa 高度层 CO₂ 浓度季节分布.夏、秋、冬、春季 CO₂ 体积分数空间变化范围分别为(391~393)× 10⁻⁶、(395~399)×10⁻⁶、(402~405)×10⁻⁶和(402~ 404)×10⁻⁶,冬季 CO₂ 浓度最高,夏季最低.

夏季 CO₂ 浓度最低,这主要是由于夏季是我国 植被光合作用最强的时段,此外夏季空气水平输送 和垂直交换剧烈也有利于 CO₂ 的稀释扩散.从图 4a 可以看出夏季江苏 CO₂ 分布为东南高,西北低,这可 能是由于以下 3 方面原因造成的:首先江苏地区夏 季总辐射量呈现北高南低^[12],有利于北部植被的光 合作用;其次江苏地区夏季气温呈现北低南高,有利 于南部土壤呼吸作用,释放 CO₂;最后也可能与江苏 南部城市化进程较快,工业较发达等人为因素有关.

秋季植被进入成熟衰弱期,光合作用较弱,但仍 然表现出较强的碳吸收能力,因此秋季 CO₂ 浓度相 对较低.CO₂ 浓度呈现东低西高,这可能与江苏秋季 盛行东北风,江苏西南部处于下风处有关.

冬季 CO₂ 浓度最高,这主要是由于冬季是江苏 省植被光合作用最低的时段,此外冬季取暖也增加 CO₂ 的排放.冬季江苏 CO₂ 浓度南高北低,这可能与 江苏盛行北风,CO₂ 向江苏南部扩散有关.

图 3 2009 年 6 月—2011 年 5 月江苏 975 和 850 hPa 高度层 CO₂ 体积分数分布 Fig. 3 Distribution of CO₂ at 975 hPa and 850 hPa in Jiangsu during June 2009 to May 2011

春季 CO₂ 浓度次高,主要是冬季 CO₂ 浓度最高,对春季 CO₂ 浓度有一定累积效果.

表1给出了2009年6月—2011年5月江苏地区 每个季节气温、降水、日照时数、风速的平均值,以及 每个季节CO₂与前一年同期的增量.由表1可以看 出,与前一年相比,四季日照时数都有所增加,其中春 季的日照时数增加最多(162.8 h),日照时数的增加 有利于植物的光合作用.因此有可能是造成春季CO₂ 浓度增幅较小的原因.研究表明东亚地区CO₂浓度与 气温呈负相关^[13],与前一年相比,春季的气温增幅最 大,也在一定程度上解释了春季 CO₂ 浓度增幅较小. 冬季由于植被光合作用较弱,受气象条件的影响较 小,主要受人为排放的影响,与 2009 冬季相比,2010 冬季气温较低,供暖需求较旺盛,有可能造成人为排 放 CO₂ 增加,但 2010 年冬季 CO₂ 浓度的增幅却较小, 有待于在今后的工作中做进一步研究.与 2009 年相 比,2010 年夏秋季的气温、光照虽然有所增加,但增幅 要小于春季,因此 CO₂ 浓度增幅要大于春季.四季的 风速都有所下降,不利于 CO₂ 的水平扩散,在一定程 度上有利于 CO₂ 浓度的增加.

图 4 2009 年 6 月—2011 年 5 月江苏 975 hPa 高度层 CO₂ 体积分数的季节分布 Fig. 4 Seasonal distribution of GOSAT CO₂ in Jiangsu during June 2009 to May 2011

 g_2 4 Seasonal distribution of GOSA1 GO_2 in Jiangsu during June 2009 to May 201

表 1 2009 年 6 月—2011 年 5 月 CO2 增量以及气候因子季节平均值

Table 1	CO,	concentration	increases	and	climate	factors	in	each	season	during	June	2009	to	May	201	. 1
---------	-----	---------------	-----------	-----	---------	---------	----	------	--------	--------	------	------	----	-----	-----	-----

						-	-	
	2009 夏季	2010 夏季	2009 秋季	2010 秋季	2009 冬季	2010 冬季	2010 春季	2011 春季
降水/mm	588.4	429. 2	184. 7	205. 2	152.1	58.6	266.6	108.1
气温/℃	26.6	27.0	17.0	17.4	3.8	2.8	13.3	14.9
日照/h	491.7	572.0	458.6	515.5	404.2	497.7	498.2	661.0
风速/(m/s)	2.3	2.2	2.1	2.0	2.4	2.3	2.9	2.5
CO2体积分数增量/10-6		3~5		3~5		2~4		2~4

2.3 CO₂ 浓度的日变化

图 5 给出了 2009 年 6 月—2011 年 5 月南京站 和徐州站 975 hPa 高度层 CO₂ 浓度日变化(包含 02、 08、14 和 20 共 4 个时次),图中数值由格点数据插值 得到.从图 5 中可以发现南京站 4 个时次的 CO₂ 体 积分数都要高于徐州站,这与图 2 中江苏南部 CO₂ 体积分数高于北部相一致.同时还可以发现两者日 变化曲线趋势基本一致,02 时 CO₂ 体积分数最高, 08 时略有下降,14 时与 08 时相比体积分数下降可 达(3~4)×10⁻⁶,20 时 CO₂ 体积分数又有所回升.这 同样与植被的光合作用有关,02 时植被不进行光合 作用因此 CO₂ 体积分数低.

3 结论

本文利用 GOSAT 卫星反演的 CO₂ 浓度数据,研 究了江苏地区 CO₂ 的空间分布、季节变化、季节增量 变化以及日变化,得出以下结论:

975 hPa 高度层 CO₂ 体积分数为(398~400)×10⁻⁶,850 hPa 高度层 CO₂ 体积分数为(393~394)×10⁻⁶,江苏地区 CO₂ 水平空间差异小于 CO₂ 垂直分布差异.

2) 在季节变化上, CO₂ 体积分数冬季为(402~405)×10⁻⁶, 春季为(402~404)×10⁻⁶, 夏季为(391~393)×10⁻⁶, 秋季为(395~399)×10⁻⁶, 这主要与植被 光合作用的强弱变化有关;比较前后 2 年的 CO₂ 浓 度数据, 夏季和秋季的增速为(3~5)×10⁻⁶, 冬季和 春季的增速为(2~4)×10⁻⁶. 春季增速较慢与光照、气 温增幅较大有关.

3) 在日变化上,将 02、08、14、20 共 4 个时次的 GOSAT 数据插值到徐州和南京站,发现徐州和南京 站 02 时 CO₂ 体积分数最高,14 时 CO₂ 体积分数最 低,这也与光合作用的强弱有关.

致谢:感谢 GOSAT 项目组提供的 CO₂ 卫星遥感资料;感谢 WMO Global Atmosphere Watch World Data Centre for Greenhouse Gases 以及瓦里关本底站和上 甸子观测站提供的 CO₂ 数据.

参考文献

References

- [1] World Meteorological Organization Global Atmosphere Watch Programme. WMO greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2013[R].2014,10:1-8
- [2] Hartmann D L, Klein T, Rusticucci M, et al. Observations: Atmosphere and surface [R]. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, and New York, USA: Cambridge University Press, 2014
- [3] Liu Y, Yang D X, Cai Z N. A retrieval algorithm for TanSat XCO₂ observation: Retrieval experiments using GOSAT data [J]. Chinese Science Bulletin, 2013, 58 (13):1520-1523
- Bai W G, Zhang X Y, Zhang P. Temporal and spatial distribution of tropospheric CO₂ over China based on satellite observations [J]. Chinese Science Bulletin, 2010, 55(31):3612-3618
- [5] 麦博儒,邓雪娇,安兴琴,等.基于卫星遥感的广东地区对流层二氧化碳时空变化特征[J].中国环境科学,2014,34(5):1098-1106
 MAI Boru, DENG Xuejiao, AN Xingqin, et al. Spatial and temporal distribution of tropospheric CO₂ concentrations over Guangdong province based on satellite observations [J]. China Environmental Science, 2014, 34 (5): 1098-1106
- [6] 王金南,蔡博峰,曹东,等.中国 10 km 二氧化碳排放 网格及空间特征分析[J].中国环境科学,2014,34 (1):1-6
 WANG Jinnan, CAI Bofeng, CAO Dong, et al. China 10 km carbon dioxide emissions grid dataset and spatial characteristic analysis[J]. China Environmental Science, 2014.34(1):1-6
- [7] 刘立新,周凌晞,张晓春,等.我国4个国家级本底站 大气 CO₂ 浓度变化特征[J].中国科学 D 辑:地球科 学,2009,39(2):222-228 LIU Lixin, ZHOU Lingxi, ZHANG Xiaochun, et al. The characteristics of atmospheric CO₂ concentration variation of four national background stations in China[J].Science

258

Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2015, 7(3):254-259

in China Series D: Earth Science, 2009, 39(2): 222-228

[8] 蒲静娇,徐宏辉,顾俊强,等.长江三角洲背景地区 CO₂浓度变化特征研究[J].中国环境科学,2012,32 (6):973-979

PU Jingjiao, XU Honghui, GU Junqiang, et al. Study on the concentration variation of CO_2 in the background area of Yangtze River Delta [J]. China Environmental Science, 2012, 32(6):973-979

[9] 李邹,方双喜,和春荣,等.香格里拉本底站大气 CO₂ 浓度及变化特征初步研究[J].环境化学,2012,31 (12):1996-2001

LI Zou, FANG Shuangxi, HE Chunrong, et al. Preliminary study of the atmospheric CO_2 concentration and its variation at Xianggelila background station [J]. Environment Chemistry, 2012, 31(12): 1996-2001

 [10] 栾天,周凌晞,方双喜,等.龙凤山本底站大气 CO₂ 数据筛分及浓度特征研究[J].环境科学,2014,35(8): 2864-2870
 LUAN Tian,ZHOU Lingxi,FANG Shuangxi, et al. Atmospheric CO. data filtering method and characteristics of

pheric CO_2 data filtering method and characteristics of the molar fractions at the Longfengshan WMO/GAW re-

gional station [J]. China Environmental Science, 2014, 35 (8):2864-2870

- [11] 侯姗姗, 雷莉萍, 关贤华. 温室气体观测卫星 GOSAT 及产品[J]. 遥感技术与应用, 2013, 28(2): 269-275
 HOU Shanshan, LEI Liping, GUAN Xianhua. A General Introduction to Greenhouse Gases Observing Satellite (GOSAT) and its products[J]. Remote Sensing Technology and Application, 2013, 28(2): 269-275
- [12] 买苗,火焰,曾燕,等.江苏省太阳总辐射的分布特征
 [J].气象科学,2012,32(3):269-274
 MAI Miao,HUO Yan,ZENG Yan, et al. The distribution characteristics of total solar radiation in Jiangsu province
 [J]. Journal of the Meteorological Sciences, 2012, 32 (3):269-274
- [13] 冯涛,张录军,柳竞先,等.北半球近地层典型区 CO₂ 体积分数时空分布及成因[J].气象科学,2014,34 (5):491-498

FENG Tao, ZHANG Lujun, LIU Jingxian, et al. Spatialtemporal distribution and cause of volume fraction of CO_2 in northern hemisphere [J]. Journal of the Meteorological Sciences, 2014, 34(5):491-498

Spatial-temporal distribution of CO₂ in Jiangsu

LU Peng¹ ZHANG Hua² LIU Duanyang³ XIANG Ying¹ XU Xiazhen¹ 1 Jiangsu Climate Center, Nanjing 210009

2 Laboratory for Climate Studies, Chinese Meteorological Administration, Beijing 100081

3 Wuxi Meteorological Observatory of Jiangsu Province, Wuxi 214101

Abstract CO_2 concentrations retrieved by Greenhouse gases Observing SATellite (GOSAT) are used to study the spatial and temporal distribution of CO_2 in Jiangsu province. The good agreement between the GOSAT data and ground-based measurements in Waliguan and Shangdianzi stations, which is shown in comparative analysis, validates the GOSAT data for CO_2 concentrations retrieval. The spatial-temporal characteristics of CO_2 concentration by GOSAT data are listed and analyzed for Jiangsu province during June 2009 to May 2011. The volume fraction of CO_2 are at the range of 398×10^{-6} - 400×10^{-6} and 393×10^{-6} - 394×10^{-6} at 975 hPa and 850 hPa, respectively. The volume fraction of CO_2 concentrations are found in winter and summer, respectively, which can be related to photosynthesis variation in different seasons. As shown by the two years' data, the volume fraction of CO_2 increases by 3×10^{-6} - 5×10^{-6} in summer and autumn, and 2×10^{-6} - 4×10^{-6} in winter and spring. The diurnal variation of CO_2 concentrationshows peak at 02:00 and troughat 14:00 in Nanjing and Xuzhou station, which may be attributed to vegetation's photosynthesis variation at diurnal level.

Key words GOSAT data; CO2 concentration; spatial distribution; seasonal variation; diurnal variation