文章编号:1674-7070(2014)06-0525-05

唐亚平1 陈苏婷1

基于单 CCD 尺寸检测的摄像机标定方法

摘要

为提高机械零件尺寸检测的精度. 针对 Tsai 两步标定法中初始参数不精确 的问题,提出了基于直线投影约束的三 步标定方法,该方法首先利用直线投影 约束条件求解出图像中心点和畸变参数 的初始值,然后结合径向排列约束条件 求解超定方程组得出全部外部参数和余 下内部参数值,最后对全局参数进行非 线性优化.为验证提出方法的效果,通过 建立基于图像模板的世界坐标系实现, 即首先利用图像像素坐标求取摄像机坐 标,再将摄像机坐标进行归一化,利用外 参数矩阵就可以求解出图像点的世界坐 标.结果表明,该方法可以有效提高摄像 机标定的精度,像素误差可达0.1265像 素点,单目视觉尺寸检测中任意两点距 离误差小于 0.41%.

关键词

电荷耦合元件(CCD);摄像机标定; 直线约束;径向约束;归一化;Tsai方法

中图分类号 TP751.1 文献标志码 A

收稿日期 2013-12-25

资助项目 中国博士后科学基金(2011M50094 0); 江苏省高校自然科学研究重大项目 (12KJA510001)

作者简介

唐亚平,男,硕士生,从事图像处理方面的 研究.786854170@qq.com

陈苏婷(通信作者),女,博士,副教授,硕 士生导师,主要从事高速实时信号处理、图像 处理的研究.utingchen27@163.com

0 引言

摄像机标定是机器视觉技术的基础,目前已成为计算机视觉领域中的研究热点之一,被广泛用于图像测量、物体识别、工业检测、机器视觉等领域.摄像机标定结果的精度及算法的稳定性直接影响最后结果的准确性.

目前对摄像机标定的方法大致可以分为两类,即基于平面模板 的摄像机标定方法和摄像机自标定方法.基于平面模板的标定方法可 以使用任意的摄像机模型,适用于标定精度要求高的场合,但其需要 一个结构已知的标定模板作为空间参考物.文献[1]提出的基于两步 法的摄像机标定虽然能较为准确地标定摄像机,但是其对初始值的 依赖较大,如果初始值计算不当,就会对第二步的非线性优化产生影 响.文献[2]提出的基于棋盘格模板的摄像机标定新方法可以很准确 地估算摄像机的像面中心坐标,但是其在求解其他初始参数时只选 取了像面中心处一小块作为标定初始空间,容易陷入初始参数局部 最优的情况.相机自标定方法比较灵活,它不依赖于标定参照物,与场 景和摄像机的运动无关,仅利用摄像机内参数自身存在的约束就可 以实现标定,但其鲁棒性较差.文献[3]提出的基于本质矩阵的摄像机 自标定方法具有很高自适应性和灵活性高等优点,但是需要求解 Kruppa 方程,对噪声和初值敏感,因此求解起来比较困难.

本文在 Tsai 的摄像机两步标定方法基础上,提出了一种基于直 线投影约束的三步标定方法.该方法首先通过基于直线约束的条件准 确地求解出图像像面中心坐标 U₀、V₀以及摄像机径向畸变系数 K₁、 K₂,然后再利用初始参数结合径向约束条件求解出其他参数的初始 值,接着通过有约束的非线性最优化方法对所有参数优化,使所有参 数达到全局最优解,最后通过选取图像上任意一点,利用所求的参数 求出该点三维坐标,并与实际所测点进行比较,验证该方法的准确性. 试验结果表明,相对两步法,本文方法提高了摄像机内外参数的标定 精度,达到了单目视觉尺寸检测的目的.

1 Tsai 两步法原理

基于 RAC(Radial Alignment Constraint,径向排列约束)的定标方法^[4]是计算机视觉像机定标方面的一项重要工作.基于 RAC 方法的最大好处是它所使用的大部分方程是线性方程,该方法仅用到一阶

¹ 南京信息工程大学 江苏省气象探测与信息处理重点实验室,南京,210044

径向畸变模型,从而降低了参数求解的复杂性,因此 其定标过程快捷、准确.

Tsai 方法首先利用径向一致约束来求解旋转矩 阵 \mathbf{R} 、X和Y方向的平移 t_x 和 t_y 以及 CCD(Charge-Coupled Device,电荷耦合元件)相机在垂直方向的 有效单元间距 S_x ,然后再利用非线性优化求解有效 焦距f、z方向上的平移 t_z 和畸变系数 K_1 .Tsai 方法的 假设条件为 U_0 、 V_0 已知,畸变系数非线性优化时默 认为0,并且它只考虑了一阶径向畸变,主点坐标既 是图像中心又是径向畸变中心.Tsai 的摄像机模型 如图1所示.

图 1 摄像机坐标系 Fig. 1 Camera coordinate system

虽然基于 RAC 方法其定标过程快捷,但是由于 其只考虑了一阶径向畸变,其标定的准确度有待提 高,故适合于对标定精度要求不高的场合.

2 三步标定法

本文提出了基于直线投影约束的三步标定方法.该方法包括直线投影约束预标定、径向约束求解 超定方程组和全部参数非线性优化3个步骤.

2.1 基于直线投影约束预标定

在理想的情况下,空间任意一条直线在像平面的投影仍为一直线,但是由于存在畸变,实际直线在 像平面上所成的像为一曲线.通过分析实际的投影 曲线,可以获取镜头的畸变系数以及图像的像面中 心点坐标^[5].

假定 (x,y) 是直线的理想投影 l 上的任意点的 像点坐标,满足关系:

$$f(x,y) = y - kx - b = 0,$$
 (1)
其中 k 和 b 为百线参数 本文采用的是^一阶径向畸变

模型,并且考虑到成像过程中可能存在的误差因素, 式(1)可写为

$$f(x_{d}, y_{d}) = y_{d} + (y_{d} - y_{c})(k_{1}\rho^{2} + k_{2}\rho^{4}) - k(x_{d} + (x_{d} - x_{c})(k_{1}\rho^{2} + k_{2}\rho^{4})) - b = e. \quad (2)$$

$$\overrightarrow{N} \mp \underline{i} \underbrace{g_{di}}_{i} + (y_{di} - y_{c})(k_{1}\rho^{2} + k_{2}\rho^{4}) - k(x_{di} + (x_{di} - x_{c})(k_{1}\rho_{i}^{2} + k_{2}\rho_{i}^{4})) - b = e^{i},$$

$$i = 1, 2, \dots, N, \qquad (3)$$

其中, $\rho_i = \sqrt{(x_{di} - x_c)^2 + (y_{di} - y_c)}$. 求解方程组, 可以确定 x_c, y_c, k, b, k_1, k_2 .

2.2 径向约束求解超定方程组

求得图像中心坐标以及畸变参数的初值后,为 了得到余下参数的值,需要利用径向约束条件.将得 到的畸变中心和二阶径向畸变系数代入式(2),可以 得到:

$$\frac{(s_x)^{-1}(u_i - u_0)}{(v_i - v_0)} = \frac{(f/f_u)(u_i - u_0)}{(f/f_v)(v_i - v_0)} = \frac{d_u(u_i - u_0)}{d_v(v_i - v_0)} = \frac{x_{di}}{y_{di}} = \frac{x_{ui}}{y_{ui}} = \frac{r_{11}x_{ui} + r_{12}y_{ui} + r_{13}z_{ui} + t_x}{r_{21}x_{ui} + r_{22}y_{ui} + r_{23}z_{ui} + t_y},$$
(4)

然后交叉相乘得:

$$(a_1 x_{wi} + a_2 y_{wi} + a_3 z_{wi} + a_4) (v_i - v_0) = (a_5 x_{wi} + a_6 y_{wi} + a_7 z_{wi} + 1) (u_i - u_0).$$
(5)

已知 7 个点的世界坐标和图像坐标,利用矩阵 求解方法就可以求出参数 a₁、a₂、a₃、a₄、a₅、a₆、a₇,再 利用旋转矩阵的正交关系就可以依次求解出旋转矩 阵、X 和 Y 方向上的平移以及 S_x.

对于一个标志点,可以得到:

$$\begin{cases} d_u(u_i - u_0) + D_x = f \cdot \frac{r_1 X_{wi} + r_2 Y_{wi} + r_3 Z_{wi} + t_x}{r_7 X_{wi} + r_8 Y_{wi} + r_9 Z_{wi} + t_z}, \\ d_v(v_i - v_0) + D_y = f \cdot \frac{r_4 X_{wi} + r_5 Y_{wi} + r_6 Z_{wi} + t_y}{r_7 X_{wi} + r_8 Y_{wi} + r_9 Z_{wi} + t_z}, \end{cases}$$
(6)

其中 D_x 、 D_y 分别为X和Y方向的畸变.

对于一系列的标志点,上述2个方程形成了一个超定方程组,可以用线性最小二乘法求解出Z方向上的平移 t₂和在X和Y方向上的有效焦距.

2.3 全局非线性优化

至此所有内外参数的初值都已求出.为了得到 所有参数的最优解,本文通过选取目标函数、设定约 束条件,利用 LM(Levenberg-Marquard)算法^[6]对所 有参数进行非线性优化,使所有参数收敛到全局最 优解.

南京信息工ビメ学学报:自然科学版,2014,6(6):525-529

Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2014, 6(6): 525-529

首先给出目标函数为

$$\min_{\mathbf{R}, T_{f}, k_{1}, k_{2}, d_{u}, d_{v}, x_{c}, y_{c} \in \mathbf{R}} \left\{ \left[(x_{di} - x_{c})/d_{u} + (1 + D_{x}) - f \cdot \frac{r_{1}x_{wi} + r_{2}y_{wi} + r_{3}z_{wi} + t_{x}}{r_{7}x_{wi} + r_{8}y_{wi} + r_{9}z_{wi} + t_{z}} \right]^{2} + \left[(y_{di} - y_{c})/d_{u} + (1 + D_{y}) - f \cdot \frac{r_{4}x_{wi} + r_{5}y_{wi} + r_{6}z_{wi} + t_{y}}{r_{7}x_{wi} + r_{8}y_{wi} + r_{9}z_{wi} + t_{z}} \right]^{2} \right\}, \quad (7)$$

所有参数之间还存在以下等式约束关系:

$$\begin{cases} r_1^2 + r_4^2 + r_7^2 = 1, \\ r_2^2 + r_5^2 + r_8^2 = 1, \\ r_3^2 + r_6^2 + r_9^2 = 1, \\ r_1 \cdot r_2 + r_4 \cdot r_5 + r_7 \cdot r_8 = 0, \\ r_1 \cdot r_3 + r_4 \cdot r_6 + r_7 \cdot r_9 = 0, \\ r_2 \cdot r_3 + r_5 \cdot r_6 + r_8 \cdot r_9 = 0. \end{cases}$$

$$\tag{8}$$

此外根据一些事先预知信息还可以得到一些不 等式的约束关系:

$$\begin{cases} f_a \leq f \leq f_b, \\ a_x \leq x_c \leq b_x, \\ a_y \leq y_c \leq b_y. \end{cases}$$

本文利用有约束的 LM 最优算法来对所有参数 进行全局最优化,从而得到内外参数的精确值.

3 基于单 CCD 点的三维重建

在得到摄像机的内外参数后,结合特定的世界 坐标系就可以求出图像上某点的世界坐标.本文建 立以图像坐标平面为世界坐标系 XOY 平面,这样图 像点的 Z 坐标分量就为 0^[79],如图 2 所示.

首先利用图像点的像素坐标计算出图像点的摄 像机坐标,再利用摄像机坐标计算世界坐标.考虑到 计算的复杂性,本文先将摄像机坐标(X_e, Y_e, Z_e)的 Z坐标归一化,得到归一化后的摄像机坐标(X_g, Y_g , 1),这样 $Z_e = 1$;然后利用矩阵运算以及一系列代数 方程由图像像素坐标解出归一化后的摄像机坐标 (X_g, Y_g)^[10].下面来推导如何由归一化的摄像机坐 标求出三维世界坐标.

令
$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \mathbf{T} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}, Z_w = 0, 曲$$

 $\{X_g = X_c/Z_c, \exists H \in : Y_v = Y_v/Z_v, \exists H \in : Y_v/Z_v, \exists H$

$$\begin{bmatrix} r_{11} & r_{12} & -X_{g} \\ r_{21} & r_{22} & -Y_{g} \\ r_{31} & r_{32} & -Z_{c} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{c} \end{bmatrix} = \begin{bmatrix} -t_{1} \\ -t_{2} \\ -t_{3} \end{bmatrix},$$
(9)

这样就得到了 X_w, Y_w, Z_c 的一个三元方程,由此方程可以解出 X_w, Y_w, Z_c .

Fig. 2 World coordinate system

4 实验结果分析

为验证本文方法正确性,利用实验室光学平台, 采用单 CCD 对模板图像进行拍摄以及对其进行标 定,然后在模板图像上任取若干点,利用标定所得参 数对这些点进行三维重建^[11-13],通过与实际测量值 进行比较,得出结论.

 1)首先选取一平面模板作为标定参照物,并且 在上面选取一条直线;

2) 将 CCD 摄像机固定在光学平台的支架上,移动模板拍摄标定物图片若干张;

3) 直线投影约束预标定得到畸变系数和图像
 中心点坐标;

4)利用径向排列约束条件求解大部分外参数和 *S*_x;

5) 非线性优化得到全局参数的精确值;

6)利用所得到的内外参数进行单 CCD 尺寸检测的验证,与张正友标定法(以下称张法)^[14]和两步法进行比较,结果如表1所示,其中 f_x, f_y 表示 X和 Y方向有效焦距,(X_e, Y_e)为图像中心点坐标, K_1, K_2 为径向畸变一阶和二阶系数.

在图像上每10个点选取一点,用本文法对图像 点进行三维重建,与张法^[14]和两步法比较,结果如 图3和图4所示,本文图像点像素误差如图5所示.

527

Table 1 Calibration parameters and error comparison between three methods						
参数	——————————————————————————————————————		张法[14]		Tsai 两步法	
	结果	误差	结果	误差	结果	误差
f_x/mm	657.367 61	0.344 57	657.64375	0.40243	661.194 09	1.467 20
f_y/mm	657.769 61	0.37036	658.041 13	0.430 57	663.37358	1.58577
$X_{\rm c}/{ m mm}$	302. 489 25	0.595 00	303. 192 39	0.818 60	319.5	1.73572
$Y_{\rm c}/{ m mm}$	242.83439	0.59790	242.555 66	0.748 81	239.5	1.245 34
K_1	-0.256 01	0.002 69	-0.256 10	0.003 14	-0.207 02	0.004 01
K_2	0.128 03	0.01070	0.130 89	0.012 51	0	0

图 3 实际点与本文法重建点比较 Fig. 3 Comparison of actual point and reconstructed

point by the proposed method

结论 5

本文提出的三步标定法通过直线投影约束预标 定、径向约束求解和非线性优化可以得出摄像机内 外参数的精确值,通过实验测得图像上任意一点世 界坐标,得出图像上任意两点的尺寸大小,对比实际

Fig. 5 Pixel error of the proposed three step method

所测三维坐标,实验证明该方法较之两步标定法可 以达到更好的效果,像素误差为0.1265像素点,单 目视觉尺寸检测中任意两点距离误差小于 0.41%. 与 Tsai 两步标定法相比,三步标定方法的精度提高 约76.51%,但算法时间比两步标定法增加约 14.62%,综合考虑算法精确度和时间复杂度,三步 标定的提出具有较高的实用意义,可以有效地应用 于其他计算机视觉系统中.

参考文献

References

- [1] 李文涛,马钺.基于两步法的摄像机标定[J].控制工 程,2011,18(S1):48-51 LI Wentao, MA Yue. Camera calibration based on twostage method[J].Control Engineering of China, 2011, 18 (S1):48-51
- [2] 牛海涛,赵勋杰.采用棋盘格模板的摄像机标定新方 法[J].红外与激光工程,2011,40(1):133-137 NIU Haitao, ZHAO Xunjie. New method of camera calibration based on checkboard[J].Infrared and Laser Engineering, 2011, 40(1): 133-137
- [3] 江泽涛,吴文欢.基于本质矩阵的摄像机自标定方法 [J].中国图像图形学报 A,2010,15(4):565-569 JIANG Zetao, WU Wenhuan. An essential Matrix-based

南京信息工行大学学报:自然科学版,2014,6(6):525-529

Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2014, 6(6): 525-529

camera self-calibration method[J].Journal of Image and Graphics,2010,15(4):565-569

- [4] 徐杰.机器视觉中摄像机标定 Tsai 两步法的分析与改进[J].计算机工程与科学,2010,32(4):46-47
 XU Jie.Analyzing and improving the Tsai camera calibration method in machine vision[J].Computer Engineering & Science,2010,32(4):46-47
- [5] 朱玉艳,尚振宏,康燕妮,等.角点检测技术研究及进展[J].电脑开发与应用,2010,23(3):40-43
 ZHU Yuyan, SHANG Zhenhong, KANG Yanni. Research and progress in corner detection[J]. Computer Development & Applications, 2010,23(3):40-43
- [6] 刘国瑛,薛月菊,邹湘军,等.基于图像残差的摄像机标定精度比较[J].农机化研究,2010,32(10): 118-121
 LIU Guoying,XUE Yueju,ZOU Xiangjun, et al. The compare of camera calibration accuracy on image residuals
 [J]. Journal of Agricultural Mechanization Research, 2010,32(10):118-121
- [7] Steger C, Ulrich M, Wiedemann C. Machine vision algorithms and applications [M]. Wiley-VCH Verlag GmbH & Co KGaA, 2008
- [8] Helder D L, Markham B L, Thome K J, et al. Updated radiometric calibration for the Landsat-5 Thematic Mapper

reflective bands [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3309-3325

- [9] Tadono T, Shimada M, Murakami H, et al. Calibration of PRISM and AVNIR-2 onboard ALOS 'Daichi' [J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):4042-4050
- [10] Chander G, Coan M J, Scaramuzza P L. Evaluation and comparison of the IRS-P6 and the Landsat sensors [J].
 IEEE Transactions on Geoscience and Remote Sensing, 2008,46(1):209-221
- [11] Chen K S, Wu A M, Chern J S, et al. Formosat-2 mission: Current status and contributions to Earth observations [J].Proceedings of the IEEE, 2010, 98(5):878-891
- [12] Liu C C, Kamei A, Hsu K H., et al. Vicarious calibration of the Formosat-2 remote sensing instrument [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2162-2169
- Thome K J, Arai K, Tsuchida S, et al. Vicarious calibration of ASTER via the reflectance-based approach
 [J]. Transactions on Geoscience and Remote Sensing, 2008,46(10):3285-3295
- [14] Zhang Z Y. A flexible new technique for camera calibration[J].IEEE Transactions Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334

Camera calibration method of size detection based on single CCD

TANG Yaping¹ CHEN Suting¹

 Jiangsu Key Laboratory of Meteorological Observation and Signal Processing, Nanjing University of Information Science & Technology, Nanjing 210044

Abstract The problem of inaccurate initial parameters perplexed the Tsai two-step calibration method, hence a three-step calibration method based on linear projection constraints is proposed for camera calibration in order to improve the size detection precision of mechanical parts. Firstly, the linear projection constraint conditions were used to solve the initial accurate value of the image center and the distortion parameters. Combined the radial alignment constraint conditions with overdetermined equations, all the external parameters as well as the rest of internal parameters are then solved. Finally, the nonlinear optimization is conducted to all the parameters by constrained conditions. The world coordinate system based on image template is established to verify the effect of the proposed method. Using the image pixel coordinates, the camera coordinates are calculated and then normalized. The world coordinates corresponding to image point are solved using the external parameter matrix. An experiment is carried out with single CCD, and the coordinate results are comparatively analyzed with Tsai method and Zhang method. The experiment results show that this proposed method can effectively improve the accuracy of camera calibration, with pixel error reaching 0. 126 5 and distance error of arbitrary two points in monocular visual size detection being less than 0. 41%.

Key words CCD; camera calibration; linear constraint; radial constraint; normalization; Tsai method