α —对称环

李丽霞1 任艳丽12

摘要

设 α 是环R 的自同态 推广对称环的概念 引入 α -对称环,给出 α -对称环的一些性质.

关键词

 α -对称环; α -刚性环; α -Armendariz 环

中图分类号 TH71; TG803 文献标志码 A

0 引言

1 主要结果

定义 1 设 α 是环 R 的一个自同态. 如果对任意的 a b $c \in R$,满足 abc = 0 则有 $ac\alpha(b) = 0$ 称环 R 是 α -对称环.

显然 R 是对称环等价于 R 是 I_R —对称环 但一般的 对任意的 $\forall \alpha \in \text{End}(R)$ 且 $\alpha \neq I_R$ 若 R 是对称环 R 未必是 α —对称环.

例 1 设 $R = Z_2 \oplus Z_2$. 显然 R 是一个交换的约化环. 再设

$$\alpha: R \rightarrow R \alpha((a \ b)) = (b \ a)$$

由文献 [6]知 R 是约化环 "从而为对称环 "然而 R 不是 α —对称环. 事实上 (1,1)(0,1)(1,0)=0 .但

$$(1 \ 1) (1 \ 0) \alpha ((0 \ 1)) = (1 \ 1) (1 \ 0) (1 \ 0) \neq 0.$$

设 $\alpha \in \text{End}(R)$,一个环 R 称为 α —Armendariz 环 若对任意的

$$p = \sum_{i=0}^{m} a_i x^i \ q = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha],$$

满足pq = 0则有 $a_i b_i = 0 (\forall i j \in N)$.

命题 1 R 为 α -Armendariz 环且为 α -对称环 则 R 为对称环.

证明 对任意的 a b $r \in R$ 满足 abr = 0 因为 R 为 α -对称环 则 $ar\alpha(b) = 0$. 令 p = arx $q = b \in R[x; \alpha]$, $q = arxb = ar\alpha(b)$ $q = arxb = ar\alpha(b)$

收稿日期 2011-01-18

资助项目 江苏省"青蓝工程"中青年学术带 头人基金 作者简介

李丽霞,女,硕士生,主要研究方向为一般环论.ehnyjs@163.com

任艳丽(通信作者),女,教授,主要研究方向为环论.renyanli@163.com

¹ 辽宁师范大学 数学学院 辽宁 116029

² 南京晓庄学院 数学与信息技术学院,南京 210017

 $ar\alpha(b) = 0$,所以 pq = 0. 再由 R 为 α —Armendariz 环知 arb = 0 故 R 是对称环.

命题 2 α -对称环的子环是 α -对称环.

设
$$\alpha_i$$
: $R_i \to R_i$ ($i \in I$) ,若定义 $\bar{\alpha}$: $\prod_{i \in I} R_i \to R_i$

$$\prod_{i \in I} R_i \overline{\alpha}((a_i)) = (\alpha_i(a_i)). 则有$$

命题 3 $\prod_{i \in I} R_i$ 是 $\overline{\alpha}$ -对称环当且仅当对任意的 i $\in I$ R_i 是 α_i -对称环.

命题 4 对任意的环 R ,下列命题等价:

- R 是 α-对称环;
- 2) eR 和(1-e) R 是 α -对称环 其中 e 是 R 的中心幂等元且 $\alpha(e)=e$.

证明 1) ⇒2).

因为 eR 和(1-e) R 是 R 的子环 ,由命题 2 即得结论.

 $2) \Rightarrow 1$.

对任意的 a b $c \in R$ 且满足 abc = 0 ,有 $e^3 abc = 0$.由 e 的可换性知 eaebec = 0 .又因为 eR 是 α -对称环 则有 $eaec\alpha(eb) = 0$,从而 $eac\alpha(b) = 0$.类似的可证 $(1-e)ac\alpha(b) = 0$.这样就有 $ac\alpha(b) = 0$.

文献 [7] 给出了 α -刚性环的定义. 设 α 是环 R 的一个自同态 称 α 是环 R 的一个刚性自同态 如果对任意的 $r \in R$,由 $r\alpha(r) = 0$ 就有 r = 0. 称 R 是 α -刚性环 ,如果 R 存在一个刚性自同态 α . 由文献 [7] 知 α -刚性环是约化环 ,但是约化环不一定为 α -刚性环.

命题 5 $R \in \alpha$ -刚性环 $\Leftrightarrow R$ 为约化的 α -对称环且 α 为 R 上的单同态.

证明 " \leftarrow ". 对任意的 $r \in R$ 且 $r\alpha(r) = 0$,有 $rr\alpha(r) = 0$,由 R 为 α -对称环可得 $r\alpha(r)$ $\alpha(r) = 0$,又 因为 R 为约化环,所以为对称环,即 $\alpha(r)$ $r\alpha(r) = 0$. 因为 R 为 α -对称环,则有 $\alpha(r)$ $\alpha(r)$ $\alpha(r) = 0$,即 $(\alpha(r))^3 = 0$. 再由 R 为约化环可得 $\alpha(r) = 0$. 这样由 α 为 R 上的单同态可得 r = 0 ,所以 R 是 α -刚性环.

"⇒". 设 R 是 α -刚性环 ,则 R 为约化环且 α 为 R 上的单同态. 对任意的 a , b , $c \in R$ 且满足 abc = 0 , 因为 R 为约化环 ,所以为对称环 ,则有 bac = 0 ,进而 $ac\alpha(b)\alpha(ac\alpha(b)) = 0$,再由 α -刚性环的定义可得 $ac\alpha(b) = 0$. 综上知 R 为 α -对称环.

设 α 是环R的一个自同态, $R_2 = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a$,

 $b \in R$ 定义

$$\bar{\alpha}: R_2 \rightarrow R_2 \ \bar{\alpha} \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \alpha(a) & \alpha(b) \\ 0 & \alpha(a) \end{pmatrix}.$$

命题 6 设 R 是 α -刚性环,则 $R_2 = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \middle| a \ b \in R \right\}$ 为 $\bar{\alpha}$ -对称环.

证明
$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix}, \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix}, \begin{pmatrix} a_3 & b_3 \\ 0 & a_3 \end{pmatrix} \in R_2 \ \square$$

满足

$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} a_3 & b_3 \\ 0 & a_3 \end{pmatrix} = 0 ,$$

即

$$\begin{pmatrix} a_1a_2a_3 & a_1a_2b_3 + a_1b_2a_3 + b_1a_2a_3 \\ 0 & a_1a_2a_3 \end{pmatrix} = 0 ,$$

则有

$$a_1 a_2 a_3 = 0 , (1)$$

$$a_1 a_2 b_3 + a_1 b_2 a_3 + b_1 a_2 a_3 = 0. (2)$$

式(2) 两边从左侧分别乘以 a_3 有

$$a_3 a_1 a_2 b_3 + a_3 a_1 b_2 a_3 + a_3 b_1 a_2 a_3 = 0 ,$$

即

$$a_3a_1b_2a_3 + a_3b_1a_2a_3 = 0$$
,

在上式两边从右侧分别乘以 a_1 有 $a_3a_1b_2a_3a_1=0$,于 是有 $b_2a_3a_1b_2a_3a_1=(b_2a_3a_1)^2=0$. 因为 R 是 α -刚性 环 ,进而为约化环 ,因而 $b_2a_3a_1=0$. 再由 R 为约化环 进而为对称环可得 $a_1b_2a_3=0$,

用同样的办法可以得到 $a_1a_2b_3=0$ $b_1a_2a_3=0$. 于是由 $a_1a_2a_3=0$ 可得 $a_1a_3\alpha(a_2)$ $\alpha(a_1a_3\alpha(a_2))=a_1a_3\alpha(a_2a_1a_3)$ $\alpha^2(a_2)=0$,再由 R 是 α -刚性环得 $a_1a_3\alpha(a_2)=0$.

同理由 $a_1a_2b_3=a_1b_2a_3=b_1a_2a_3=0$ 可得 $a_1b_3\alpha(a_2)=a_1a_3\alpha(b_2)=b_1a_3\alpha(a_2)=0$,

这样就有

$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_3 & b_3 \\ 0 & a_3 \end{pmatrix} \overline{\alpha} \begin{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} \end{pmatrix} =$$

$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_3 & b_3 \\ 0 & a_3 \end{pmatrix} \begin{pmatrix} \alpha(a_2) & \alpha(b_2) \\ 0 & \alpha(a_2) \end{pmatrix} =$$

$$\begin{pmatrix} a_1 a_3 \alpha(a_2) & a_1 b_3 \alpha(a_2) + a_1 a_3 \alpha(b_2) + b_1 a_3 \alpha(a_2) \\ 0 & a_1 a_3 \alpha(a_2) \end{pmatrix} = 0.$$

给定一个环 R 和双模 $_RM_R$ $_R$ 通过 M 的平凡扩张是环 $T(R,M) = R \oplus M$,其运算是通常的加法和以下定义的乘法:

$$(r_1 \ m_1) (r_2 \ m_2) = (r_1 r_2 \ r_1 m_2 + m_1 r_2).$$

T(R|M) 与所有形如 $\binom{r}{0}$ 的矩阵构成的环同构 这里 $r \in R|M \in M$ 运算按通常矩阵运算. 令 α 是

环 R 的自同态 T(R,R) 是平凡扩张 ,可将 α 扩张成为 T(R,R) 上的自同态.

$$\overline{\alpha}$$
: $T(R|R) \to T(R|R)$ $\overline{\alpha} \left(\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} \right) = \begin{pmatrix} \alpha(r) & \alpha(m) \\ 0 & \alpha(r) \end{pmatrix}$.

命题 7 设 R 是 α -刚性环 ,则 T(R,R) 是 $\bar{\alpha}$ -对称环 $\Leftrightarrow R$ 是 α -对称环.

由此可以猜测: 若 R 是 α -刚性环 则全矩阵环

$$M_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}$$

也为 $\bar{\alpha}$ -对称环 ,但下面的例子否定了这个猜测.

例 2 设 R 是 α -刚性环 $\Omega \neq e^2 = e \in R$,且 $\alpha(e) = e$. 于是有

$$\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} = 0 \ ,$$

但是

$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_3 & b_3 \\ 0 & a_3 \end{pmatrix} \overline{\alpha} \begin{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} \end{pmatrix} =$$

$$\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \overline{\alpha} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} \end{pmatrix} =$$

$$\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \alpha(e) \end{pmatrix} =$$

$$\begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix} = \begin{pmatrix} 0 & e \\ 0 & 0 \end{pmatrix} \neq 0$$

故 $M_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}$ 不是 $\bar{\alpha}$ -对称环.

下面的例子进一步说明 若 R 是 α-刚性环 则

$$S = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \middle| a \ b \ c \ d \in R \right\}$$

未必是 $\bar{\alpha}$ -对称环.

例 3 在例 2 中特别地取 e=1 则有

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 ,$$

但是

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \overline{\alpha} \begin{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \neq 0 ,$$

故 S 不是 $\bar{\alpha}$ -对称环.

设 R 是交换环 M 是 R-模 σ 是 R 的单同态 则 $R \oplus M = \{ (r, m) \mid r \in R, m \in M \}$ 是一个环 ,其中 $(r_1, m_1) + (r_2, m_2) = (r_1 + r_2, m_1 + m_2)$, $(r_1, m_1) (r_2, m_2) = (r_1 r_2, \sigma(r_1), m_2 + r_2 m_1)$,称这种扩张为 R 通过 M 与

 σ 做成的 Nagata 扩张. 由于 R 是自身上的双模 则可令 $\overline{\sigma}$: $R \oplus R \to R \oplus R$ 其中 $\overline{\sigma}(r,m) = (\sigma(r), \sigma(m))$ $(r, m \in R)$.

命题 8 设 R 是交换整环 σ 是 R 的单同态 则 R 通过 R 与 σ 做成的 Nagata 扩张为 σ -对称环.

证明 对任意的 (r_1, r_1') , (r_2, r_2') , $(r_3, r_3') \in R \oplus R = N$, 且 (r_1, r_1') (r_2, r_2') $(r_3, r_3') = (r_1r_2r_3, \sigma(r_1r_2)r_3' + r_3\sigma(r_1)r_2' + r_3r_2r_1') = (0.0)$, 即

$$r_1 r_2 r_3 = 0 , (3)$$

$$\sigma(r_1 r_2) r'_3 + r_3 \sigma(r_1) r_2' + r_3 r_2 r_1' = 0.$$
 (4)

因为 R 为交换整环 ,所以在(1) 中有 $r_1 = 0$ 或 $r_2 = 0$ 或 $r_3 = 0$.

不妨设 $r_1 = 0$ 代入式(4) 即有 $r_3 r_2 r_1' = 0$ 则 $r_2 = 0$ 或 $r_3 = 0$ 或 $r_1' = 0$ 无论哪种情况均有 $\sigma(r_2) r_3 r_1' = 0$. 所以

$$(r_1 \ r'_1) (r_3 \ r'_3) \overline{\sigma}((r_2 \ r'_2)) =$$

$$(r_1 \ r'_1) (r_3 \ r'_3) (\sigma(r_2) \ \sigma(r_2)) =$$

$$(r_1 r_3 \sigma(r_2) \ \sigma(r_1 r_3) \sigma(r_2) + \sigma(r_2) \sigma(r_1) r_3' +$$

$$\sigma(r_2) r_3 r_1') = (0 \ 0).$$

若 $r_2 = 0$ 则代入式(4) 有 $r_3\sigma(r_1)$ $r'_2 = 0$ 因为 R 是交换整环,所以 $r_3 = 0$ 或 $r_2 = 0$ 或 $\sigma(r_1) = 0$,又因为 σ 是 r_3 的单同态,所以实则为 $r_3 = 0$ 或 $r_2 = 0$ 或 $r_3 = 0$

$$(r_1 \ r_1') (r_3 \ r_3') \overline{\sigma}((r_2 \ r_2')) =$$

$$(r_1 \ r_1') (r_3 \ r_3') (\sigma(r_2) \ \sigma(r_2')) =$$

$$(r_1 r_3 \sigma(r_2) \ \sigma(r_1 r_3) \sigma(r_2') + \sigma(r_2) \sigma(r_1) r_3' +$$

$$\sigma(r_2) r_3 r_1') = (0 \ \Omega)$$

若 $r_3 = 0$ 情况类似 ,可得相同结果. 综上所述 ,命 题得证.

由文献 [8] 知,整环是约化环,但约化环不一定是整环. 下面说明若 R 是交换的约化环,则 N 不一定是 $\overline{\sigma}$ -对称环.

例 4 令 D 是特征为 0 的整环,

 $R = D \oplus D$, $(d_1 \ d_2) (d_3 \ d_4) = (d_1 d_3 \ d_2 d_4)$. 显然 R 是交换的约化环 ,但不是整环.

现在定义: σ : $R \rightarrow R$ $\sigma((s,t)) = (t,s)$. 则易见 σ 是 R 的自同构. 显然 ,

((0 Å) (0 Å))((1 Ø) (0 Å))((1 Å) (0 Å)) =0, 但是

$$((0 1) (0 1))((1 1) (0 1)) \overline{\sigma}(((1 0) (0 1))) = ((0 1) (0 1))((1 1) (0 1))((0 1)) = ((0 1) (0 1))((0 1))((0 1)) =$$

$$((0,1),(1,0)+(0,1)) = ((1,0),(1,1)) \neq 0.$$

这说明 R Nagata 扩张不是 $\overline{\sigma}$ -对称环.

令 α 是环 R 的自同态 ,定义 $\bar{\alpha}$: $R[x] \to R[x]$, $\sum_{i=0}^{m} a_i x^i \mid \to \sum_{i=0}^{m} \alpha(a_i) x^i$ 则 $\bar{\alpha}$ 是 R[x] 的自同态 ,此映射仍记做 α . 对 R 的自同态 α ,用相同的方法可定义 $R[x x^{-1}] \to R[x x^{-1}]$ 上的自同态.

命题**9** R[x]是 α -对称环当且仅当 $R[x]_{\alpha}^{-1}$] 是 α -对称环.

证明 "←". 由命题 2 可得.

"⇒". 对任意的 f(x) g(x) $h(x) \in R[x; x^{-1}]$, 且满足 f(x) g(x) h(x) = 0 ,则存在正整数 m ,p ,q 使得

$$f_1(x) = f(x) x^m \in R[x],$$

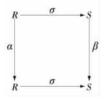
 $g_1(x) = g(x) x^p \in R[x],$
 $h_1(x) = h(x) x^q \in R[x],$

所以 $f_1(x) g_1(x) h_1(x) = f(x) g(x) h(x) x^{m+p+q} = 0$,进而 $f_1(x) g_1(x) h_1(x) = 0$. 又因为R[x]是 α -对称环,所以 $f_1(x) h_1(x) \alpha(g_1(x)) = 0$. 从而

$$\begin{split} f_1(x) \, h_1(x) \, \alpha(g_1(x)) &= 0 \; , \\ f(x) \, h(x) \, \alpha(g(x)) &= \\ f_1(x) \, h_1(x) \, \alpha(g_1(x)) \, x^{-m-p-q} &= 0 \; , \end{split}$$

综上 命题得证.

命题 10 设有环及其同态的下列交换图表 ,若 σ 是单同态且 S 是 β -对称环 ,则 R 是 α -对称环.



证明 对任意的 a ,b , $c \in R$ 且满足 abc = 0 ,则 $\sigma(abc) = 0$ 进而有 $\sigma(a)$ $\sigma(b)$ $\sigma(c) = 0$. 因为 S 是 β - 对称环 则有 $\sigma(a)$ $\sigma(c)$ $\beta(\sigma(b)) = 0$. 又因为图表可换所以 $\sigma(a)$ $\sigma(c)$ $\sigma(\alpha(b)) = 0$,进而 $\sigma(ac\alpha(b)) = 0$. 再由 σ 是单同态可得 $ac\alpha(b) = 0$. 综上知 R 是 α -对称环.

参考文献

References

- [1] Kim N K Lee Y. Extensions of reversible rings [J]. Pure Appl Algebra 2003 ,185: 207-233
- [2] Lambek J. On the representation of modules by sheaves of factor modules [J]. Canad Math Bull ,1971 ,14: 359-368
- [3] Hong C Y ,Kim N K ,Kwak T K. Extensions of generalized reduced rings [J]. Algebra Colloq ,2005 ,12 (2): 229-240
- [4] 张春霞. 弱对称环 I. [J]. 西北师范大学学报: 自然版, 2006 42(1): 24-26
 ZHANG Chaunxia. Weak symmetric rings I. [J]. Northwest Normal University Journal: Natural Science Forum 2006 42(1): 24-26.
- [5] Ouyang L Q ,Chen H Y. On weak symmetric rings [J]. Comm Algebra 2010 38(2): 697-713
- [6] Anderson D D , Camillo V , Semigroup and rings whose zero products commute [J]. Comm Algebra ,1999: 27 (6): 2847-2852
- [5] 庞羽. 右可逆环和弱 α-对称环[D]. 大连: 辽宁师范大 学数学学院 2010 Pang Yu. Right reversible ring and weak α-symmetric ring[D]. Dalian: Liaoning Normal University Mathematics 2010
- [7] Huh C ,Kim N K ,Lee Y. Basic examples and extensions of symmetric rings [J]. Pure Appl Algebra ,2005 ,202: 154-167
- [8] Krempa J. Some examples of reduced rings [J]. Algebra Colloq 1996 3(4):289-300

α -symmetric rings

LI Lixia¹ REN Yanli¹²

- 1 College of Mathematics Liaoning Normal University Dalian 116029
- 2 College of Mathematics and Information Technology Nanjing Xiaozhuang University Nanjing 210017

Abstract For a ring endomorphism α ,we generalize the concept of symmetric rings ,introduce the notation of α -symmetric rings and investigate some properties of them.

Key words α -symmetric rings; α -rigid rings; α -Armendariz rings