Article ID;1674-7070(2011)02-0183-07

Nonlinear boundary stabilization of a
compactly coupled system of wave
equations with variable coefficients

Abstract

In this paper,we investigate the stabi-
lization of the compactly coupled wave e-
quations with variable coefficients and non-
linear dissipative boundary feedback. The
energy decay estimates of solutions are ob-
tained by the Riemannian geometry method
and the multiplier technique.
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0 Introduction

In this paper,we investigate the following evolutionary system

u, + 2u +a(u-v) =0, in2xR,
v, +.Zv+a(v-u) =0, inxR,
u=v=0, on I'y xR,
Ju
T/+au+gl(u)=0, on I’y xR, (1)
E “ Y aw+g(v) =0, on I', xR,
/
u(0) = up,u,(0) in 0,
v(0) = v,,v,(0) = v, in ().

where (2 is a 1) with smooth boundary I
which consists of two parts: Iy and I',, I’y UI", = I",with I"| nonempty,
% is the operator defined by

.ﬁ?uz—za(”() ) (2)

i,j=1

bounded domain in R" (n =

where a; = a; are C* functions in R" for ISL,]Sn and

.Z]’a,’j(x)fifj >0’ g = (51’52’...’§n> #0’ § € Rn’ (3)

x e R",

. . Ju
a:R—R,a,,a,:I''—R,g,,2,: R—>R are some given functions, .
v,

Z a” ax, 1/ is the co-normal derivative and » = (v, ,v,,:+,v,) is the unit
i,j=1

outward normal on [.

The problems of observation, control and stabilization for the wave e-
quations have been widely studied. In the case where the coefficients a,
are constants (i.e.,.Z = — A), energy decay rates were obtained by
[1-6] and many other papers. For the case of variable coefficients ,the ex-
act controllability problems have been studied by several authors. For ex-
ample , Yao'”' derived the geometrical conditions for exact controllability of
wave equation with variable coefficients principal part. The main tool of
[7] is the geometrical method which is useful in generalizing some results
obtained in constant coefficient case to variable coefficient case. Feng'®’

[6]

extended the results of Zuazua™” to the variable coefficients case by using

Riemannian geometry method and the integral inequality introduced
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in [3]. Recently, Guo and Shao"*’

form stabilization of an originally regarded non-dissipa-

considered the uni-

tive system described by a semilinear wave equation
with variable coefficients under the nonlinear boundary
feedback. By introducing an equivalent energy function
and using the energy multiplier method on the Rieman-
nian manifold , they obtained the exponential stability of
the system. Moreover, Yao'""' has discussed decay of
the energy for the Cauchy problem of the wave equation
of variable coefficients with a dissipation. We refer the
readers to [ 11-13 ] for recent contributions in this di-
rection.

In the case of coupled system of wave equations we
can mention [ 14-17 ] ,in most of which the case of con-
stant coefficients is considered. For example , Aassila''*’
studied the decay property of the solutions to the evolu-
tionary system (1) with .Z = — A and obtained decay
estimates of the energy of solutions. However, very little
is known of the variable coefficients case. The purpose
of this paper is to extend the result of Aassila'™' to the
variable coefficients case. The main tools are the Rie-
mannian geometry method and the integral inequality
technique which are powerful to cope with variable co-
efficients. These methods are used in [ 8] for the wave
equation with variable coefficients and will be extended
here for the compactly coupled wave equations.

Our paper is organized as follows. In section 1,we
list our main result. In section 2, we give the proof of
the main result: Theorem 2.

1 Preliminaries and main result

To begin with,we introduce some notations and re-
fer the reader to Yao'’ for further understanding of
these notations. Moreover,we will apply some results in
[7] to proof of our main theorem.

Let A(x) = (a;(x)) for x e R" be an n x n ma-
trix, where a; are the same as that in (2).Let R" have
x,) be the natu-
ral coordinate system. Denote G (x) = (g, (x)) =
A(x) ™
product and the norm on the tangent space R” =R" by

zgl,(x)aﬁ,,

ljl

|X|g:<X,X>g,
CSal

= o,

Y = iﬁ.ieR”.
= ox, !

(R", g) is a Riemannian manifold with Riemannian

the usual topology and x = (x, ,x,,--

511

, Vx e R". For each x € R" define the inner

g(X,Y) = (X)Y),

metric g. Denote the gradient of u in Riemannian mani-

TR L ARG s Ty AR UL AR ek FURUE

fold (R",g) by V ,u,then we have

2(2 ‘/ax)ax

i Ju Jdu
a; — .
ij=1 / axi axj

Denote the Levi-Civita connection by D on (R",g). Let
H be a vector field on (R",g) ,the covariant differenti-

2
|Vl =

al DH of H determines a bilinear form on R x R for
each x e R" by
DH(X,Y) = (DyH)Y),, VX,Y e R].

where Dy H is the covariant derivative of vector field H
with respect to X. We set H]ro(-Q) =lueH (D)l u-=
0on I',f
order k.
The energy E(t) of system (2) is definde by:

1 2 2 2 2
- 7L(u, w02+l Vol 4l Vol?)de +

,where H"((2) is the usual Sobolev space of

E(t)

%jﬂw ) de +%L (ai +ap?)dl. (4)

Similar as shown in [ 14 ], we give the following
assumplions.

(H1) The domain 2 is of class C.

(H2) The partition of I satisfies the condition
r,nr,=0.

(H3) Let H be a vector field on Riemannian man-

ifold (R",g) such that

DH(X,X) =bl1 X1, VxeR,xec
for some constant b >0, and
H-v<0 only and inf 'H-»>0

(H4) The coefficients a, ,a, are nonnegative and
they belong to C' (I, ). Moreover, either I", # @ or
inf. a, >0 and inf; a, >0.

(H5) The function o is nonnegative and belongs
to L”(£2).

(H6) The functions g, and g, are continuous , non-
decreasing , and

g.(x) =0ex =0.
Furthermore , there exists a constant C such that
lg(x)I<sl1+Clxl, VxeR.

Making use of standard semigroup arguments, we
have the following result

Theorem 1 Let the above hypotheses (H1)—
(H6) be satisfied, then for all initial data u,, v, €
HIFO(_Q) and u,,v, € I’ (Q), problem (1) has a u-
nique weak solution satisfying

u,v e C(R,,Hp, (2)) N C(R,,L’(2)).

Furthermore, if g, ,g, are globally Lipschitz cotinu-
ous and u, ,v, € HZ(Q) N H} (02) ,u,,v e HFO(Q)
are such that

du,

f+au0+g1(ul) =0,
o,
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o
and —> + av, +g,(v,) =0on I,
(91/_,//

then the solution is more regular and
u,vwe L"(R,,H(0Q) N H1 (Q))ﬂ

W (R, () 0P (RLE(D)). (5)

Remark 1 The well-posedness and regularity of
problem (1) is obtained by the same arguments as in
the case of constant coefficients (see [15]) but with a
few modifications ,we omit the details.

Our main result is the following theorem.

Theorem 2  In addition to the assumptions
(HI)—(H6) , we further assume u,,v, € H () N
H]FO(_Q) and u, ,v, EH]F () such that

du,

— yau, +g(u) =0,
o,

o,
and 0 4 a,vy + g, (v,) =0on I,
W,
Assume that there exist p such that

p=1, ifn=1,
p>1, ifn=2,
p=n-1, ifn=3,

and two positive constants C, ,C, such that
ClxI"sg,(x)<C,xI"", iflxI<l, (6)
Clxlslg(x)I<Clxl, iflxl=1, (7)
(i=1,2),then the solution of (1) satisfies the esti-
mates:
E(t) sCt‘z%l, Vi>0ifp>1,
E(t)<CE(0)e ™, Vit>0ifp=1,
where C and w are positive constants.
We need the following lemma
Lemma 12 Let E:R,—R, be a non-increas-
ing function and assume that there exist a nonnegative
number ¢ and a positive number A such that

| Edas < 4B, foralli =0,
Then putting T=AE(0) ~*, we have
E(1) < E(O)(M)
T + qt
if ¢ >0,and

E(t)
if ¢ =0.

, forallt=T

< E0)e' T, forall =T

2  Proof of the main theorem

In this section, we will combine the Riemannian
geometry method and multiplier technique used in [8,
14] to prove our main result. We first state the follow-
ing lemmas.

Lemma 2 E(t) is a non-increasing function for
t=0 and

%E(l) :_fr](gl(u”)u’ +g,(v,)v)dIl. (8)

Proof Multiplying the first equation of (1) by u,
and the second equation by v, ,integrating them over (2,
adding them together and using the boundary condi-
tions , we obtain

E(t) -E(0) =
_er(gl(uJu,+g2(v,)v,)dfds, t = 0. (9)

Note that . Zu = - div,V ,u ,where div, denotes the di-
vergence in the Euclidean metric. Then we have the
equality (8).

Lemma 3 Let (u,v) be the solution of (1) and
satisfy (5).

1) Assume that H is a vector field on 0. Then
T o
Lﬁ ) (DH(V u, ¥ ,u) + DH(V 0,7 ) )dxdt +
T -1
%Lﬁjﬂ(uf +v; -l V,ul? -1 Vl2)divyHdxdt -
r p=1
%f,sE ZIJ;O(' ngHZ’ +| Vg”'é)H cvdlde =
ool S
[E5[ (uH(uw) + v H))de ] 4
(0] T
=]
71J’ E? Etf (utH(u) +’U[H(y))dxdt +
(0]
fE”fl[ (i +0} 1 V,ul? -1 Vol )H ol -
[ 7 [ [+, () H() + (@ +,(0) H) 14T -
T o
[ EZ[ (HGw) - HG))au - v) ded. (10)
S 0
2) Let PZ%(diVoH—b) eCz(?Z).Then

sl 2 2 2 2 _
[ E=[ (V1241 V012 =l =0]) Pdxdt =
Lls 0 .
[Ezf(u,Pu +vtP1j)dx] -
0 T
T o
fEZ f(x(u —v)(Pu — Pv)dxdt+
s 0
— T -
pTlLE%}E,L(ulPu +0,Pv)dxdt -

Topmt
%szj(uz +07) APdxdt -

ICENES

(azv +g,(v,) )Pv]dFdz.

Proof
1) We have

r p=1
0= f EZIJH(u)(u,, +.2u+a(u-v))dxdt =
s 0

Sy )7+ <a1u+g1(ut) )Pu+

(11)

B uHG ] PS5 [ 555w des -

T
sz u,H(u,)dxds —fffH(u)dlvov udxdt +
s 0
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T oy
szfa(u - v)H(u)dxdt.
s 0

Integrating by parts, using Green’s formula, the identity

(12)

in [7] (see Lemma 2.1) and the boundary condi-
tions,we have

L(u,H( w,) + H(u)div,V u)dx =

1 2 2 .
- | DH(V ,u,V u)dx - —| (u; -1 V, ul?)div,Hdx
L (V,u,V, u) 2Jﬂ(u (1) divg +

i 2 . i 2 2 . _
2 1Vl udr+f“ 5 (=1 Vul)H -wdl
(o + g (u))H(u)dI (13)

Combining (12) and (13),and noticing that analogous
identities hold for v. Taking their sum we get (10).
2) Similarly to (i) ,we obtain

0= fTE%lfPu(u“ + . 2u + oa(u —v))dedt =
[E% u,Pudx ] T
LE 2 fﬂpufdxdt - LTE

J’fﬁjﬂa( u — v) Pudxdt.

An analogous identity holds for v. Then summing them,

p=1( _
> LE 2 E,Lu,Pudxdt

%fﬂpudivovgudxdt +
(14)
we have

-1 S T,
[ElTj (u,Pu +Uth)dx] —j ﬁja(u —v)(Pu—-Pv) +

0 r Js g
T,

p%fSﬁE,J;z(u,Pu +0,Pv)dxdt =

T oyt
-jEzj(Puz + P?)duds -

If (Pudiv, V u + Podiv, V o) dxde.  (15)
We have
j (Pudiv, V ju + Podiv, V v) dx =

j(Pu Vol 4l Vpl? >+—<u +07). 2P d
ff][i(

(ayo + g, (v,))Pv]dr. (16)
In the last step we used the boundary conditions and the

112) — + (au + g, (u,))Pu +
81/_4

following identity in [7 ]

(V,u,V, (Pu)) =
P1ull + 3divg (6 V,P) + i 4P,

Then , substituting (16) into (15) ,we have (11).
Lemma 4 It holds that

T psl ptl T op
jEzdzsCEz(S) +chzj(u2+y2)dxdt+
S S 0

,
p-1
CfE2 (u! +0v +u” +0 +g,(u)’ +
s r

T AL R BOEAR A BT R AR L .

gZ(vt)z)drdt ’
foral 0sS<T< + .
Proof Applying Lemma 3 (ii) ,we have

1 Tt 2 2 2 2
ZLEZL(‘Vgug+‘vgv\g—u,—v,)
(diveH - b)dxdt =

1 p-1 . S
?[E L(leOH—b)(utu+v,v)dx]r+

(17)

Ty
7lf E: EtJ’ (divgH — b) (u,u + vw)dxdt —
s 0

LfE’ﬂ(uz +02) A(divgH - b)dxdi —
4 )57 g B

a(divyH)

V.,

[ v
. .4 u o+
1 (7 et .
?LEZ L][(alu +g,(u,)) (divpHu - bu) +
(ayw + g,(v,)) (divyHv - bv) ]dI'dt -
T 4
%J’sﬁjﬂa(u —v)(divyH = b) (u —v)dxdt. (18)
From (10) and (18) ,we get
T oy
| E= [ (DH(V 0,V u) + DH(V 0,V ,0) +
s p)

drde -

1
Sl 40l =l Vulf =1 V0 15)) dudr -
1 (7 e
TJSE%JFOU Vol 4l Vol 2)H - pdldr =
pL s
[EZI(uLM(u) +U,,M(v))dx] "
02 T
p=1 e )
2 LEZE'L(“»WW +v,M(v) ) dxds

T,
1—] EZ [ (0 +07) 2 (divgH = b) dadt +
4 15,

JTE%I [L(uz+v2 -l Voul? -
S r 2 ! ! S
a(divoH
| nglz,)H'V—L(uz+vz)w]dfdt—
4 v,

[ B [+ e (u)) M) +
(a0 + &(0,))M(2) JATdr -

j:E*fna(u ) (M(u) - M(v))dxde, (19)
with M(S) =H(S) +%div0HS —%s.

For the left-hand side of (19) ,we have
T oy
fEf (DH(V ,u,¥V ,u) + DH(V v,V ) +
s 0

S +of 1 Tl -1V w12) ) duds
Topst

S ES[ Va2l Vel HH vl =
S Iy

1, (7
b LE”TL(uf w07+ Vul? 4 Vol )deds, (20)

where we have used the assumption ( H3). Similarly to
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[8],we easily obtain the following estimates,

p—1 S p+l
[Ezlj(utM(u) +o,M(v))dx $CE2](S),
0 T

p-1 (e
— EzEtf(utM(u) +o,M(v))dxdt <
2 s 0

T o1 prl
—CfEZEtdtsCEZ(S),
S
L Tt 2 2N /7
- fSEzjn(u +07) A(divgH - b)dwdt <
T o
Cf E7 | (¢ +0)dade,
S 0
jTE*j [L( 402 =l Vol =l Vol H -y -
S L2 ¢ ¢y Ve
1, 5, 5, d(div,H)
4(u +v)781/_,/
T oy
[ E=] [Caw+ g (u))M(u) +
: 1
(ay +g,(v,) )YM(v) ]dINdt <
T,
Cfﬁ (@ +0" +u” +v” +g,(w,)" +g(v,)")dld.
s

|drd: -

Then by Cauchy-Schwarz inequality and the bounded-
ness of (2,we have

f (u—v)M(u —v)dx
0
Furthermore , we obtain

- JZE%La(u - v) (M(u) - M(v) )dxdt =

< CFE.

T o T per
—jEZJa(u —v)M(u —v)dxdt < Cszdt.
s 0 s
By (4) and the above estimates,we have

T e il T o ) )
fEZdtsCEZ(S)+CJE2f(u + 07 dads +
S S 0
T oy
CfE2 (u; +v7 +u” +0° +
s I

g (u)?* +g,(v,)*)dIldu.

The next result presents an inequality where the
lower order terms on the right hand side of (17) will be
absorbed.

Lemma 5 It holds that

f:E%I(L(uZ + 07 ) dwx +L (> +Uz)df)dt <

T o1
Cf Ezf (u; + 0] +g(u)” +g,(v,)")dlde (21)
S I

for all 0<S<T< + .
Proof By Lemma 2 we get

p+ p+ T,
ET(S) —ET(T) =- LJ ETEd <
14 +1Js

r o
C[EZ[ (i +0! +g(u) +g,(u))dld (22)
S T
From (17) and (22) ,we have
prl T o
E7(S) schzj(uz + %) dads +
S 0

T
C(S,T) LE% i (u* +0° +u,2 +11,2 +g1(ut)2 +
: 1

g, (v,)?)dlde. (23)
We will argue by contradiction. Let (u,, ,v, ) be a
sequence of solution of (1) such that

j:ﬁ (L(ufn 1o )dx +Ll(ui +vfn)dr)dt — 1, (4)

. et 2 2 2
lim [ EF | (i, o, + () 4
E 1

g, (v,))dldt =0, (25)
where E is the energy of (u, ,v, ). From (23),(24)
and (25) we see that £, (S) is bounded. Then,we get
subsequence, still denoted by (u, ,v, ), that satisfies
the following properties :
weakly in H' (),
u,, (S) —>u, v,(S) —v weaklyin L*(0).
Setting (u,v) is the solution of (1) with the initial da-
ta:
u(x,S) = uy(x),
u,(x,5) =u(x),
Then

tu u

um(S)Hﬁ07 ym(S)_>/DO

v(x,S) = v,(x) in
v,(x,S) =9, (x) in £

{v v

m >~ mt

wally b — {w,u, ), f— 1,0,
weakly star in L™ (S,T;H' () x L’'(Q)).
Applying compactness results ,we deduce that
u, —>u, v, >0
strongly in L’ (S,T;LZ(Q) NL(T) ) (26)
Case 1. (u,v) #(0,0). We have

where E, is the energy of (u,v). According to (22),
(25) and (27) ,we have
limE, (T) > 0.
From (25) ,we car;nj)oi)tain that
u,, —0,v,, —0,strongly in L’ (S,T;L*(T,)),
g (u,,) — 0,g,(v,,) — Ostrongly in L*(S,T;
().

Passing to the limit in the equation,we get for (u,v),

u, +.72u+alu-v) =0, inNx(S,T),
v, +. 2 +a(v-u) =0, inOx(S,T),
u=0,b=0, on 'y x (S,7T),
£+alﬁ=0,ﬁ,=0 on I', x (S,T),
v,

Jv _ _

— +a,v =0,9, =0 on ', x (S,T),
w,

and for u, =u,v, =v,

w, + u+a(pw-v) =0, in2x(S,T),
v, + Zv+alv-u) =0, inN2x(S,T),
uw=0p=0, on Iy x (S,T),
K —ou=0 on I, x (S,T),
(91//

ﬂ:O,V =0, on I'; x (S,T).
.,
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It implies that (u,v) =(0,0) for T — S large enough.
Then we have

Au, =0, Av, =0, in {2,
u, =0, v, =0, on [y,
T _

— +au =0, on I,
v,

av, -

— +a,v, =0, on I'}.
v,

with (u,v) = (4,0, ). By the assumption ( H4) , we
get (uy,v,) =(0,0). That is (u,v) =(0,0),which
contradicts our assumption.

Case 2. (u,v) = (0,0). We conclude by
(26) that

’
lim (f(uﬁl + o2 )dx +f (i +vfn)dl“)dt - 0. (28)
mo= J s \p r
Since E, (S) is bounded,we have

lim f:Em?u (L(ui +v,2")dx+frl(u,2n +1),2”)d]—')dt =0,

which contradicts (24 ). Thus,Lemma 5 is proved.
Proof of Theorem 2 Combining Lemma 4 and
Lemma 5, we obtain

T et prl
jEz‘dzs CEZ (S) +
S

r p=1
C[ES[ (2 +af + g (u)? +g(0))dlde (29)
S T

Using the growth assumption (6) ,we have

[ eu)Har <
lu,l <1

¢ (ug (u))rdl <
lu) <1
2

c(j“N(utgl(u,))dr)’msC| E 171, (30)

On the other hand,if n =1,we have u, EHIFO(Q) cL”
and then

[ G+ eu)dr <
lul =1

C (utu“zgl<u“:))dlﬂg

lul =1
Cllu, H””L (ug,(u))dl < Cl E, 1. (31)
1
If n=2,we get

[ ke u)dr <
Ll =1

C[ 1V u, 17 (g, () PdT <
I

2 2
¢l w1 | ug )| <
(p+1)/(p-1) (p+1)/2
2p/ (p+1) 2 (p+1)
Cllu u,g, (u,) <CIE Y7  (32)
2/ (p-1)

where we have used Holder’s inequality and the fact
H' (Q)cL”"""(I') under the assumption (7).
We have similar inequalities for v. Combining

(29)—(32) ,we obtain that

T AL R BOEAR A BT R AR L .

T s )+ o) 2
f]ﬁdt < CET(S) + cf ETE |rds,
S S
Using the Young inequality ,for any fixed £ >0 we have
T 2
chzl | E 1ide <
S

r prl
[ (E% +Cle) 1 E 1 )i <
S

gﬂE%‘dt +C(8)E(S).
Therefore,
(1-¢) j:E*dt < CE7(S) + CE(S),
for 0 < & <1,whict follows that
j:ﬁ‘dt < C(E7(0) + 1)E(S),

with p =1 if n = 1. Then the proof of Theorem 2 is fin-
ished by applying Lemma 1.
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