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On equivalence of stability criteria for

Abstract

In recent years, free weighting matrix
approach is an important technique to deal
with the delay-dependent stability problem
for systems with time-varying delay. In this
paper,some simplified delay-dependent sta-
bility criteria are derived by using a simple
integral inequality,in which no free weigh-
ting matrix is involved. These presented re-
sults turn out to be equivalent to some latest
results but include the least number of vari-
ables. This feature can largely reduce the
computational burden of the obtained LMI
conditions.
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LI Tao' WU Lingyao’

0 Introduction

The delay-dependent stability analysis for time-delay systems keeps
attracting researchers for decades (see [ 1-6]). The aim for delay-de-
pendent stability analysis has been focusing on effective reduction of the
conservatism of the stability conditions. Many methods have been provided
for this aim, e. g. the model transformation method'”’ | the inequality boun-
ding technique method'®'. Recently ,a free-weighting matrix method is pro-
posed in [9-10] ,which is very effective to tackle the delay-dependent sta-
bility problem. However, the free weighting matrix method often needs to
introduce many slack variables in obtaining LMI conditions and thus leads
to a significant increase in the computational demand. One natural ques-
tion is how to simplify the existing stability results using matrix variables
as less as possible while maintaining the effectiveness of the stability con-
ditions.

In this paper, we present some simplified delay-dependent stability
criteria for three type of time delay. These results are shown to be equiva-
lent to some existing results in [ 11-13 ] but with much less variables. This
means that our results are more efficient as the computational burden is
largely reduced. Numerical examples are given to verify the effectiveness
of the proposed criteria.

1 Problem formulation

Given the following system :

{J'c(t) Ax(t) +Ax(t —d(t));
x(t) =®d(t), Yiel[-h,,0].

where x(t) e R"is the system state vector. A and A are given matrices.

(1)

The time delay,d(¢) ,is a time-varying continuous function that satisfies

d(1) <u, (2)

where 0 < h, < h, and u are constants. Note that h, may not be equal to

hy <d(t) <h,,

0. The initial condition, @ (t) ,is a continuous vector valued initial func-
tion of t € [ h,,0].

The purpose of this paper is to derive some simplified delay-depend-
ent stability criteria and to turn out to be equivalent to some existing re-
sults. To this end,the following Lemma is needed.

Lemma 1"
a scalar y >0, vector function ew; [0,r]—R",such that the integrations

. For any positive symmetric constant matrix M € R"*",

concerned are well defined,then
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([lots)s) M( [ans)as) < [ ()Meo(s) s (3)

2 Main result

In this section,we will give the stability conditions
for three types of time delay. The conditions are ob-
tained by only using inequality (3) and turn out to be
equivalent to some existing results but include the least
number of variables.

2.1 Interval time-varying delay case ( h, # 0,
hy <d(t) < h,,d(t) <p)

Very recently, a less conservative delay-range-de-
pendent stability condition for time delay systems is
presented in [ 13 ] by introducing some free weighting
matrices. we rewrite this as follows.

Lemma 2'"”'. Given scalars h, ,h, o and b, =
h, — h,. Then, for any delay d(¢) satisfying (2),the
time-delay system (1) is asymptotically stable if there
exist matrices P >0,0Q, >0(i=1,2,3),R, >0,R, >
0,N;,M; and S;(j =1,2) ,such that the following LMI
hOldS:

_'Qu 012 M _Sl thl _hIZSl hle ATU_
* 8, M, -S, BN, -hyS, h,M, A,U
* % -0 0 0 0 0 0
0= * % % -Q 0 0 0 0 <0,
x % % % —hR 0 0 0
* ok % * * —h,R, O 0
* k% * * ®*  —h,R, 0
L % % % % % * * -U. (4)
where
3
0, =PA+A'P+N, +N, + Y 0,
i1
02,=PA,+N,-N, +S, -M,,
02, = _N;‘ -N, +S;‘ +S, _M; -M,-(1-pn)0;,

R, =R, +R,.

and * denotes the symmetric terms in a symmetric ma-
trix.

Lemma 2 is based on the following Lyapunov-Kra-
sovskii functional

V(1) = x"(¢)Px(1) +f) f x' ()R, X(s)dsdg +
[,
I
J:l—dmxT(s)st(S)ds

where P >0,R, >0,R, >0,0,>0(i=1,2,3).

j X7 (s)R,%(s)dsdo +

(s)Qx(s)ds +
(5)

S I AR GERRE I I A PR UE R

We choose the same Lyapunov-Krasovskii func-
tional of form (5). Based on the functional ,the follow-
ing result can be obtained.

Theorem 1. Given scalars h, ,h, ,u and h,, =h, -
h,. Then,for any delay d () satisfying (2),the time-
delay system (1) is asymptotically stable if there exist

matrices P >0,0, >0(:=1,2,3) ,R, >0,R, >0,such
that the following LMI holds;
(I, PA, +hiRl 0 0 AU
2
1 1 T
* r, —R, —R, AU
hy, hy,
Ir= 1 <0
* * -0, —hTZRZ 0 0
* * ® I, 0
L % * * * -U- (6)
where
. u 1
I, =PA +A'P + ZQl —thl,
=1 2
1 1
Fzzz_(l_M)Qs_;Rl T(R1+2Rz),
12
1
F44=_Q2_h7<R1+R2)’ R, =R, +R,,
12

U=hR, +h,R,.

and * denotes the symmetric terms in a symmetric ma-
trix.
Proof. Calculating the time derivative of V(1) a-

long the solution of (1) yields
V(t) <2x"(t)P(Ax(t) + Ax(t —d(1))) +

Bt (1R £(1) - j, ()R %(s)ds +

t—h

ho ¥ (DR%(1) - ft_hlx'T(s)sz'(s)ds +

x'(1)(Q + 0, +Q:)x(1) -

x'(1 - h)Qx(t = hy) -

x'(1 - hy)Q,x(t = hy) -

(1 -p)x'(e = d(2))Qux(¢ = d(1)) . (7)
with h;, = h, = h;. On the other hand, it follows from

Lemma 1,we have

- [ ORE() ds =
- j?t)x ()R%(s)ds - ji_dm
[ sa) R w0 -

1 L,
;T(f dmx(s)ds) Ri( [ %(s)ds) =

X' ()R ¥(s)ds <
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| -1r Lg, (2,2, 0 0 0 0 0 ]
[x(t—d(t)) hy " hy [x(t—d(t))] 5 0 o0 o 0 0
x(-i) V| 1 1 (Lx-n) "
hy, : hy, : * -0, 0 0 0 0
1 1 x % % -0, 0 0 0
| R R ’ |
N I P O C e et R e VRN
x(-d)l | 1 1 [lx@-d@0) h,
1 1
h h, * % * % * —LR3 0
1—hy h12 ‘
T . _
_sz (s)R,X(s)ds = e e w e s . —,%Rz
1—d(1) - 1—hy . L 12 .
- Jé'(s)sz(s)d.s—Jid( R < ‘N, S, M,
1o T -d() N, S, M,
_ hlz(jm %(s)ds) Rz(jtihz X(s)ds) - 0 o0 o
1 t1—hy T t—hy X = 0 0 0 |
- . R . . =
hlZ(Jt—d(t)x(S)ds) z(ft—d(r)x(S)db) O 0 0
1 1 0 0 0
-—R, —R
[x(t—d(t))]T hy, : hy, : [x(t—d(t))]+ L O 0 0 J
x(t = hy) L 1 |Uxt-hy) I -1 0 0 -I 0 0
hy 0 hy B=(0 I 0 -1 0 -I 0
e L o -1 I 0 0 0 -I
[ x(t —h)) ] hy, > hy, ° [ x(t —h)) ](9) with \
X(t=d@)’] Lp _ Lp x(t-d@)) 0, =PA+A'P+ Y 0 +A'UA,
hy, hy, izl

Taking (8) and (9) into V() ,we have
V(1) =n' () Tm(1) +hx" ()R X(1) +

hpX' (1) R% (1), (10)
with
‘I, PA,+ R, 0 o ]
h,
s r LR L(R +R,)
F] — 22 h12 2 hlz 1 2 ,
1
* * -0, h,2R2 0
| * k * F44 i

n(t) = [¥"(0) " (t=d(1)) x"(t=h) x"(t=hy) ] .

Applying the Schur complement equivalence to
(6) gives V(1) <0 by (10). Then,the system (1) is
Q.E.D
Although Lemma 2 and Theorem 1 are obtained via

asymptotically stable.

different methods, they turned out to be equivalent. To
show this,we give the following theorem.
Theorem 2. Inequality £2 <0 in Lemma 2 is feasi-
ble if and only if I"'<0 in Theorem 1 is feasible.
Proof. Note that £

expressed as

in Lemma 2 can be

2=0 +XB+B'X' <0

where

02, =PA, +A'UA,,
0, =-(1-pwQ, +A,UA,,
R, =R, +R,.
From the Finsler’s Lemma, it is readily seen that £2 <0,
if and only if
N, 2,N, <0,
hold, where N, denotes the full-rank matrix repre-
sentations of the right annihilator of B. Since
1 0 0 0 1 0 0
0 1 0 0 -1 1 -1
0 0 0 1 0 -1 0}
0 0 1 0 0 0 1
It is easy to see that Ny@,N, =I'<0 when L,, =
P,R, =Z,,R, =Z, ,this complete the proof.
Remark 1. In [ 13 ], free weighting matrices N i
M;,S.(j=1,2) are introduced in order to establish the
relationship among the correlated items,e. g. x (¢) and

x(1-d(1) to f %(s)ds.x(r - d(1)) and x (1 -

t—d(t)
t—d(t
h,) to f

Ny =

)x'(s)ds,x(t —h,) and x(t —=d(t)) to

t—hy

t—hy

j X(s)ds . However, it can be easily seen that the
t—d(t)

1 1 1
hlle ’thl ,h12R2
in (8),(9). Theorem 1 and Lemma 2 are obtained by

employing these two formulations, respectively. In fact,

relationship also can be expressed by
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they are equivalent to each other according to Theorem
2. Thus, it is naturally unnecessary to introduce such
free weighting matrices in expression of these relation-

ships.

2.2 Fast interval time-varying delay case (h, %0,
h,<d(t) <h,)

[12] : il _ h, +h,
Lemma 3' ~'. For some given scalars 7, = )
hz - hl . .
and & = 5 »system (1) is asymptotically stable for

any d(¢) satisfying h, <d(t) <h,,if there exist matri-
ces P>0,0>0,R>0,S>0,and N, ,M,(i=1,2,3)

of appropriate dimensions such that the following

LMI hold
¢, ®, D, TaMylly 5NV1FA4
* b, @, 7,M, SNA,
b= « x @, T7,M, SNIA,|<0. (11)
* ® * -7,R 0
* ® * * -68

@, =Q+N/A+A'N, +M, + M|,
@ ,=NA+A'N,-M +M,,
@, =P-N,+A'N, +M,,
®,=-0+N,A+A'N,-M, -M,,

@, =-N,+A,N, -M,,

@, =7,R+38S-N; -N;.
The following Theorem is a simplified version of
Lemma 3, which can be obtained by using the same
functional as in [ 12 ]. The proof can follow a similar

line as Theorem 1 and hence it is omitted.

. hy +h,
Theorem 3. For some given scalars 7, = )
hz - hl . .
and § = ) ,system (1) is asymptotically stable for

any d(¢) satisfying h, <d(t) <h,,if there exist matri-
ces P>0,0>0,R >0 and S >0,such that the follow-
ing LMI hold

A, :TR PA, A'A,]
£ A, 1§ 0
A= 2 ) <0. (12)
. _%s A'A,,
L & * -A;

A, =Q+A'P+PA- LR,
T

a

1 1
Alzz _Q_iR_KS,

r
A, =7,R +5S.

The equivalence between Theorem 3 and Lemma 3

a

S I AR GERRE I I A PR UE R

is stated in the following theorem.
Theorem 4. Inequality@® <0 in Lemma 3 is feasi-
ble if and only if A <0 in Theorem 3 is feasible.
Proof. Rewrite@® in Lemma 3 as
®=d , +X,B, +BX| <0.

where
rQ 0 P 0 0 7
* -0 0 0 0
* *  7,R+68S 0 0
P = % % % —LR 0 ’
T(l
1
-—S
| = ® * * 55
N, M|
N, M,
X1: N;r MI )
0 0
0 0
A A -I 0 A
B| :[ d d )
I -1 O -1 0

Similar to Theorem 2 , explicit null space based calcula-
tions yield

I 0 0
0 I 0
A A, I A
N([I P 01 J]):A 0 Al
B B I -1 0
0 -I I
Then one has
I 0 0
I 0 A" I 0 0 I 0
[o 1 0-1-1}15l A 0 A=
0 0 A, 0 I I -1 0
0 -1 1
A, +A" (1, R+8S)A LR PA, +A"(1 R +6S)A,
T(I
1
-
* A12 s
* ¢ —%S+A$(TGR+6S)A(1 (13)

After a simple rearrangement, (13) yields (12). Thus,
the equivalence between (12) and (11) is obtained by
using Finsler’s Lemma.

Remark 2. From the proof of Theorem 4 ,it is clear
that Theorem 3 is equivalent to the result in [ 12 ]. This
means that the free weighting matrices N,,M,(i=1,2,
3) in [ 12] can be removed while maintaining the ef-

fectiveness of the stability condition.

2.3 Constant delay case (h, = 0,d(¢) is constant)
For the special case of h;, =0 and d(¢) is constant



B 2150 25 225 210 URRIZE,2010,2(2) :97-102

Journal of Nanjing University of Information Science and Technology : Natural Science Edition,2010,2(2) :97-102 101

delay, the following delay-dependent stability criterion
can be obtained by setting @, =0,R, =0,0; =0 in
Theorem 1.

Lemma 5. Given scalars A, =0 and h,. Then, the
time-delay system (1) is asymptotically stable if there
exist matrices P >0,0Q, >0,R, >0, such that the fol-
lowing LMI hold ;

1

PA+A'P+Q- 1R, PA,+' R hA'R,
h, h,
1 T <0.
* -0, _;Rl hZA;Rl
2
. . hR, [(14)

Next we show that Theorem 5 is equivalent to the
result in [ 11 ]. For this purpose, we list the result in
[11] below.

Lemma 4" . Given scalars h, =0 and h,. Then,
the time-delay system (1) is asymptotically stable if
there exist matrices P >0,Q, >0,R, >0 and matrices
Y, W, such that the following LMI holds

PA+A'P+Q,+Y+Y PA,-Y+W —hY hA'R,

* -0, -W-w -h,W }LzA;];Rl <0
* * -LR, 0 '
* * * —h,R, (15)

It is easy to show the equivalence between Theorem 5
and Lemma 4 by using Theorem 2 when

PA+A'P+Q, PA, 0 h,A"R,
* -0, 0 hZA;;Rl
0] = 1 ,
# * -—R 0
h, !
* * * - h,R,
Y
X = gv JB[I -1 -I 0].
0

Remark 3. Recently, six stability conditions turn
out to be equivalent to Lemma 4 in [15]. It is true that
Lemma 4 is more efficient than those in [7,16-19 ] ,and
[20] since it involves the least number of variables
while providing an equivalent stability condition. Howev-
er,it is worth pointing out that Theorem 5 is also equiva-
lent to Lemma 4 and includes less number of variables.

3 Numerical Example

Now ,we provide an example to show the effective-
ness of our results.
Example. Consider the time-delay system

=[S etore[T} s

Table [ ,Table I ,Table Il provide some com-

parisons of the maximum allowable delay bounds and
the numbers of the variables involved in the results of

this paper and [7,11-13,16-20].

Table I Comparisons of maximum allowed delay %, and the
number of the variables for interval time-varying delay case

hy Method ©n=0.5 £=0.9 number of the variables
hy by He et.al' ™) 2,07 1.74 42
h, by Theroem 1 2.07 1.74 18

Table I Comparisons of maximum allowed delay %, and the

number of the variables for fast interval time-varying delay case

h, Method unknown g number of the variables
h, by Jiang et. all12] 1.67 36
h, by Theroem 3 1.67 12

Tablelll Comparisons of maximum allowed delay %, and

the number of the variables for constant delay case

maximum allowed number of the

hy Method delay h, variables
Suplin et. al'® 4.47 39
Fridman et. all”’ 4. 47 35
Lee et. all'®] 4. 47 35
Jing et. all!”! 4.47 35
0 Wu et. alt"®’ 4.47 27
Xu et. alt?] 4.47 25
Xu et. all'!] 4.47 17
Theorem 5 4.47 9

From the above Tables, it is seen that our results
contain the least number of computed variables while
maintaining the effectiveness of the stability conditions.
This implies that our method requires less computational

power.

4 Conclusions

This paper has established simplified delay-de-
pendent stability criteria for linear systems with time
delay. The results are shown to be equivalent to some
existing results but include much less variables in the
LMI conditions. Thus, the presented method could
largely reduce the computational burden in solving
LMIs. Both theoretical and numerical comparisons have
been provided to show the effectiveness and efficiency

of the presentd method.
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