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Modified explicit formulas for
optimal LC prototype filter design

XUAN Xiuwei'

Abstract

The modified explicit formulas for
Chebyshev and Butterworth LC low-pass fil-
ter design are given in this paper. These
formulas fully utilize the passband tolerance
obtained by rounding off the order and re-
duce the passband ripple without any
change of the filter order, greatly facilitating
the realization of the integrated filter. A de-
sign example for integrated active high-pass
filters is presented and the effectiveness of
the above-mentioned modified explicit for-
mulas is verified.
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0 Introduction

Filters are important circuit modules in systems. They can be used in ex-
tensive aspects such as DSP systems,PLL,satellite communications,etc. With
the development of system on chip,low sensitivity filter prototypes are re-
quired. Due to the low sensitivity characteristic of doubly terminated LC fil-
ters, they are chosen as design prototypes ,especially for fully integrated active
filters or RF filters. Performance demands for fully integrated active-RC filter
have increased significantly during the last several years''. The active-RC fil-
ter for frequencies beyond 300 MHz has been successfully implemented'”’.
Due to the element tolerance during the integration process,the LC prototype
filter is normally overdesigned by reducing the passband ripple greatly; how-
ever, this will increase the order of the filter and hence the cost and complexi-
ty of the chip. In this paper,the modified explicit formulas for Chebyshev and
Butterworth low-pass LC prototype filter design are given in such a way as to
obtain passband optimized filters. The specifications can be satisfied at no or-
der cost with the minimum passband tolerance.

The doubly terminated LC filter prototype can be designed by means
of the filter design handbook and table method"', or by using the CAD
software , such as Filter Solutions'*’. However, for Butterworth and Cheby-
shev LC filter design,the explicit formulas has been derived , which simpli-
fies the design process significantly.

The filter design can be divided into two phases, approximation and
realization. The optimal use of some classical approximations in filter de-
sign has recently been proposed by Dimopoulos'>' ,and the design for opti-
mum classical filters has been presented by Corral ®’.

In low-pass filter design, given the maximum passband ripple A

max

the minimum attenuation A ; in stopband, the passband edge frequency

min
o, ,the stopband edge frequency w_,the required order is firstly calculat-
ed. The evaluated number is normally a noninteger, it is rounded up to
next higher integer as filter order. This number is used to approximate the
transfer function. In the rounding up process,some surplus has been pro-
duced. Dimopoulos®’ uses such a surplus for optimum transfer function

approximation. Ivan W. Selesnick once described a modification of the
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Parks-McClellan algorithm where either the passband or
the stopband ripple size is specified and the other is mini-
mized'”'. In this paper,the modified explicit formulas for
optimum Butterworth and Chebyshev LC filter design are
given. At no order cost under the formulas presented, the
specifications can be improved with the minimum pass-
band ripple. Lastly, this proposed method is used to design
integrated filters with Operational Amplifier AD8138"*".

1 Explicit formulas for optimal low-pass filter

In Chebyshev’s case, filter attenuation can be cal-
culated by
A=10 g H(jw) | =1 -1g[ 1 +gzc§(f)]. (1)

P

where C, is nth-order Chebyshev polynomial of the first
kind.

Given A
calculated as

arcosh[ (10" "win — 1)) /(10% msx 1) ]2
n = .
arcosh(w,/w,)

max ?

A ,o,,0,,the required order can be

(2)

Then , the degree of the filter is obtained by rounding up
n to next higher integer,so-called filter order N.

The optimal idea in this paper arises from the
difference of N — n,which can be changed into advan-
tage of lower passband ripple,i. e. ,reducing the pass-

new

instead of A, yields

.(3)

band ripple. Using smaller A

max

_arcosh[ (10% M — 1) /(10" 1) ]
B arcosh(w,/w, )

N

new
max

Thus, reducing ripple parameter A’ is achieved at

no order cost.
10% Main _
+1}. 4
{cosh[ Narcosh(w /w,) ]} ) (4

So the optimized filter parameters are obtained as

A =10 1g(

max

new
A Amin ’wp s Wy

new

Once the parameter A" has been derived, the pro-

posed explicit formulas'®’ for the optimal Chebyshev LC

low-pass filter design can be modified as follows
N

e= /100 1 p= [y il
& &
1 4sin(w/2N)
= h—f =
e=(h-p ). ="
l6sin(4k_3 )sin(4k_1 )
(L] 1)
Co_i Ly, = 2N 2N

& +4sin’ ( Zk]\; 117)
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4k=1 \ . (4k+1
2N ’TI)SIH( IN ’T[)

52 +4sin’ ( %’ﬂ')

16sin(

(5)

Loy =
Fork=1,2,--- ,N/2.
Where A" is used instead of A

max max *

The end elements (L or C) are also given by (5).

4sin(w/2N)
¢, ="UTEN) (N odd)
N §R2 ( )
4R, sin( /2N
LN:M, (N even).  (6)

3
Therefore solving it for R, yields:

_4sin(nw/2N)
gcs\“
o E
> " 4sin(mw/2N)

The magnitude and frequency scaling can be per-

R, R,, (N odd),

#R,, (N even). (7)

formed as follows:

Let k,, =R, (Given) ,k, =w, =27 xf, ,then

L —ﬂL dc,. = Cy
new kf ol Al new — kfkm'

Similarly , for Butterworth filter design, A

(8)

new

can be

max

calculated as:

A =10 1g[ 1 + (10" - 1)/ (w,/w,)™"]

max

where N is the order of the filter. Explicit formulas for
optimal Butterworth LC low-pass filter design can be

modified as follows:

1
/1 (0- 145 L
e=+10""" -1 L or C, =2g"sin

Here,k=1,2,... N.
As to denormalization, let k, = R, , k; = w

L and C

new new

2k -1
2N

.

then

P

can be calculated as (8).
2 A design example

Design an integrated high-pass filter; the specifi-
cations are as follows:

Passband f, =2 MHz,A4,, =1 dB,

Stopband f, =1 MHz,A,,, =35 dB,

Load resistor Rg =R, =1 kQ.

Select Chebyshev approximation; from (2) ,it can

max

be calculated:n =41 ,and then n is rounded up to N =
5. From (3),

10% Mnin — 1 +1
A" =10 1 A1 =0. 102 535.
m =10 lg {cosh[Narcosh(&)]} 0.102 335
w

P
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Considering element tolerance during the integra-
tion,let A% =0.2 dB. By the use of (5),(6) and
(7) ,the normalized element values can be easily calcu-
lated. Then through frequency transform formulas, L, =
1/(2%f,C,) and C, =1/(27f,L;) ,we can get the opti-
mal LC circuit for high-pass filter which is shown in
Fig. 1b,and for comparison purpose, the traditional L.C

circuit is shown in Fig. 1a.

1.00000€) 72.9328 nF  72.9328 nF'

37.2749 nH | 26.5177 nH | 37.2749 nH [ 1.00000 £

a. Traditional high—pass prototype

1.00000€2 59.5187 nF  59.5187 nF

59.4108 nH [36.7385 nH [59.4108 nH [ 1.00000 Q2

b. Optimal high—pass prototype

Fig. 1 LC circuit of high-pass prototype
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Figure 2 indicates the passband simulation of the
high-pass prototype filter. The line with a large ripple is
for the traditional filter with the passband ripple A, ,
and the line with a small ripple is for the optimal filter
with the obtained passband ripple Alv. The simulation
shows that the passband ripple is much smaller by using
modified explicit formulas.

The high-pass filter can be converted into the inte-
grated active filter. Here,we let £, =1 000 and utilize
R, =k,R,C., =C

ew /k_, for denormalization. After
integrator scaling and denormalization , the high-pass in-

old m

tegrated active circuits are shown in Figure 3.

The magnitude response of the integrated high-pass
filter circuits is shown in Figure 4. It can be seen that up
to 10 MHz, the ripple is not more than 1dB. The detailed
passband response is shown in Figure 5. The line with a
larger ripple is the simulation of the integrated filter based
on Figure la,while the line with a smaller ripple is the
simulation of the integrated filter based on Figure 1b. From
Figure 5,we can see that the modified explicit formulas

can achieve the much lower passband ripple.
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Fig.2 Comparison of passband ripple

Fig.3  Active integrated high-pass filter circuit
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Fig.4 Simulation of integrated filter
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Fig.5 Passband simulation of integrated filter

3 Conclusion

In this paper the modified explicit formulas for
doubly terminated LC Chebyshev and Butterworth low-
pass filter design are presented along with their opti-
mum passband behavior, i. e. ,a lower passband ripple
at no order cost. The proposed method can be used to
design integrated active RC filters. The simulation result
indicates that the passband characteristic of the filter is

improved by the optimized design.
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