基于三维骨骼信息的动态手势识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61903175,61663027);江西省主要学科学术和技术带头人项目(20204BCJ23006);住房和城乡建设部2020年科学技术项目(2020-K-009)


Dynamic gesture recognition based on 3D skeleton information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手势识别作为人机交互的有效手段,成为当前研究的热点话题.针对动态手势识别存在时空多变性、特征复杂性等问题,本文提出了一种基于三维骨骼信息的动态手势识别方法.动态手势具有时间上的差异性和复杂性,极大地影响了动态手势识别的准确率.因此,本文设计了一种动态手势关键帧提取算法,该算法可以提取动态手势关键部分,用于进一步的特征提取.另外,单独分类器的分类效果存在差异性,本文采用多个分类器同时对手势特征进行分类,充分利用了所提取的特征.同时,本文还提出了一种自适应融合算法,可以根据分类精度有效融合不同分类器,提高最终分类效果.最后,通过实验验证了本文提出的动态手势识别框架和方法的有效性.

    Abstract:

    As an effective means of human-computer interaction, gesture recognition has become a hot topic in current research. In order to solve the problems of spatio-temporal variability and feature complexity concerning dynamic gestures, we propose a dynamic gesture recognition solution based on 3D skeleton features. The accuracy of dynamic gesture recognition is greatly impaired due to the temporal differences and complexity of dynamic gestures, thus a key frame extraction algorithm is designed to extract key features of dynamic gestures for further feature extraction. To overcome the difference in classification performance between single classifiers, multiple classifiers are used to simultaneously classify and fully exploit gesture features. We also propose an adaptive fusion algorithm to effectively fuse different classifiers according to their classification performances thus improve the final classification accuracy. Finally, experiments are carried out, and results verify the effectiveness of the proposed dynamic gesture recognition approach.

    参考文献
    相似文献
    引证文献
引用本文

熊鹏文,熊昆,张宇,余斯吉.基于三维骨骼信息的动态手势识别[J].南京信息工程大学学报,2021,13(3):291~297

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-25
  • 出版日期:

地址:江苏南京,宁六路219号,南京信息工程大学    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn    QQ交流群号:344646895

南京信息工程大学学报 ® 2021 版权所有  技术支持:北京勤云科技发展有限公司